The International Scientific Periodical Journal "Modern Technology and Innovative Technologies" has been published since 2017 and has gained considerable recognition among domestic and foreign researchers and scholars.

Periodicity of publication: Quarterly

The journal activity is driven by the following objectives:

- Broadcasting young researchers and scholars outcomes to wide scientific audience
- Fostering knowledge exchange in scientific community
- Promotion of the unification in scientific approach
- Creation of basis for innovation and new scientific approaches as well as discoveries in unknown domains

The journal purposefully acquaints the reader with the original research of authors in various fields of science, the best examples of scientific journalism.

Publications of the journal are intended for a wide readership - all those who love science. The materials published in the journal reflect current problems and affect the interests of the entire public.

Each article in the journal includes general information in English. The journal is registered in INDEXCOPERNICUS.

Sections of the Journal:

- **Subclass T1 / T11-1570**
 - Mechanical engineering and machinery

- **Subclass TK / TK1-9971**
 - Electrical engineering.

- **Subclass TA / TA1-155**
 - Engineering instruments, meters, etc. Industrial instrumentation

- **Subclass TK / TK1-9971**
 - Telecommunication

- **Subclass TK / TK1-9971**
 - Electrical engineering. Electronics. Nuclear engineering

- **Subclass TN / TN1-997**
 - Mining engineering. Metallurgy

- **Subclass TS/ TSI1870-1982, TSI2120-2159**
 - Animal products., Cereals and grain. Milling industry

- **Subclass TS / TSI300-1865**
 - Textile industries

- **Subclass TK / TK7000-8360**
 - Electronics

- **Subclass T / TSS4-60.8**
 - Industrial engineering. Management engineering

- **Subclass T / TSS1-382**
 - Mechanical drawing. Engineering graphics

- **Subclass TA / TAI1001-1280, Subclass TL / TL1-450, Subclass TE / TE1-450, Subclass TF / TF1-1620**

- **Subclass TH / THI-9745**
 - Building construction

- **Subclass T / TSS-35.3**
 - Industrial safety. Industrial accident prevention

Additional sections

Requirements for articles

Articles should correspond to the thematic profile of the journal, meet international standards of scientific publications and be formalized in accordance with established rules. They should also be a presentation of the results of the original author's scientific research, be inscribed in the context of domestic and foreign research on this topic, reflect the author's ability to freely navigate in the existing bibliographic context on the problems involved and adequately apply the generally accepted methodology of setting and solving scientific problems.

All texts should be written in literary language, edited and conform to the scientific style of speech. Incorrect selection and unreliability of the facts, quotations, statistical and sociological data, names of own, geographical names and other information cited by the authors can cause the rejection of the submitted material (including at the registration stage).

All tables and figures in the article should be numbered, have headings and links in the text. If the data is borrowed from another source, a bibliographic reference should be given to it in the form of a note.

The title of the article, the full names of authors, educational institutions (except the main text language) should be presented in English.

Articles should be accompanied by an annotation and key words in the language of the main text and must be in English. The abstract should be made in the form of a short text that reveals the purpose and objectives of the work, its structure and main findings. The abstract is an independent analytical text and should give an adequate idea of the research conducted without the need to refer to the source, a bibliographic reference should be given to it in the form of a note.

The presence of UDC, BBK

Acceptance of the material for consideration is not a guarantee of its publication. Registered articles are reviewed by the editorial staff and, when formally and in substance, the requirements of the journal are sent to peer review, including through an open discussion using the web resource www.moderntechno.de

Only previously unpublished materials can be posted in the journal.

Regulations on the ethics of publication of scientific data and its violations

The editors of the journal are aware of the fact that in the academic community there are quite widespread cases of violation of the ethics of the publication of scientific research. As the most notable and egregious, one can single out plagiarism, the posting of previously published materials, the misappropriation of the results of foreign scientific research, and falsification of data. We oppose such practices.

The editors are convinced that violations of copyrights and moral norms are not only ethically unacceptable, but also serve as a barrier to the development of scientific knowledge. Therefore, we believe that the fight against these phenomena should become the goal and the result of joint efforts of our authors, editors, reviewers, readers and the entire academic community. We encourage all stakeholders to cooperate and participate in the exchange of information in order to combat the violation of the ethics of publication of scientific research.

For its part, the editors are ready to make every effort to identify and suppress such unacceptable practices. We promise to take appropriate measures, as well as pay close attention to any information provided to us, which will indicate unethical behavior of one or another author.

Detection of ethical violations entails refusal to publish. If it is revealed that the article contains outright slander, violates the law or copyright rules, the editorial board considers itself obliged to remove it from the web resource and from the citation bases. Such extreme measures can be applied only with maximum openness and publicity.
THE MODEL OF SUSTAINABLE TERRITORIAL DEVELOPMENT BASED ON INNOVATION

Rybak A.I. / Рибак А.І.
d.t.s., prof., acad. of the Academy of Communications of Ukraine / д.т.н., проф., акад. Академії зв’язку України

National Maritime University, Odessa, Mechnikova 34, 65029
Одеський національний морський університет, Одesa, вул. Мечникова 34, 65029

Azarova I.B. / Азарова І.Б.
c.t.s. / к.т.н.
Odessa Regional Institute of Public Administration of the National Academy of Public Administration under the President of Ukraine, Odessa, Genoese street, 22, 65000
Одеський регіональний інститут державного управління Національної академії державного управління при Президентові України, Одеса, вул. Генуезька 22, 65000

Anotacja. Досвід сучасного розвитку деяких країн свідчить, що інновації здатні виступити потужним ключовим фактором розвитку відповідного регіону. В існуючих методичних документах з розробки стратегій розвитку територій не формалізовано конкретні методи забезпечення сталості розвитку територій та місце інновацій в цьому процесі. Тому формування моделі сталого розвитку територій на основі інновацій було обрано метою дослідження. На базі концепції сталого розвитку та життєвого циклу, інструментів та методів сучасної інноватики була отримана модель сталого розвитку територій на основі інновацій, що встановлює метод розробки та впровадження інновацій за кожною зі сфер сталого розвитку, визначає роль організаційно-управлінських інновацій для забезпечення збалансованого розвитку економічної, соціальної та екологічної сфери. Запропонована модель може бути використана як основа формування стратегій сталого розвитку територій.

Ключові слова: модель сталого розвитку територій, інновації, життєвий цикл розвитку територій.

Вступ.

Дослідження досвіду стрімкого розвитку таких азіатських країн, як Корея, КНР або Сінгапур, свідчить, що інновації здатні виступити потужним ключовим фактором розвитку відповідного регіону та забезпечити для країни із досить скромними стартовими економічними умовами стійкі провідні позиції у світі за відносно короткі терміни [1]. Впровадження новітніх інноваційних розробок в широкий спектр сфер діяльності також дозволяє ефективно вирішувати не лише економічні, а й актуальні соціальні та екологічні проблеми держави, що є надзвичайно важливим для забезпечення сталого розвитку.

Згідно гіпотезі цього дослідження, саме інновації можуть стати найбільш перспективним ключовим фактором забезпечення сталого розвитку територій України, та здатні сприяти вирішенню існуючих проблем розвитку територій держави, таких як значні диспропорції у розвитку її регіонів, погіршення демографічної ситуації, нераціональне використання територій, екологічні проблеми, та деякі інші [2]. Проте, в існуючих методичних документах [3,4]
щодо розробки стратегій розвитку територій поки що не були формалізовані конкретні методи забезпечення сталості розвитку територій, а також не визначено роль інновацій в цьому процесі.

Серед найбільш значущих зарубіжних робіт щодо дослідження інновацій можна назвати праці І. Ансоффа, К. Оппенлендера, Б. Санто, Б. Твісса, Р. Уотермана, М. Хучек. Серед дослідників сталого розвитку, зокрема, регулювання сталого розвитку в Україні, значний внесок у розвиток даної проблематики зробили О. Алімов, Н. Андрєєва, І. Бистряков, Є. Борщук, А. Даниленко, О. Маслак, М. Малік, А. Садовенко, В. Сахаєв, А. Стельмашук, В. Трегобчук, Є. Хлобистова, В. Шевчук, В. Щербатих.

Але у попередніх дослідженнях так і не було встановлене місце інновацій у забезпеченні сталого розвитку територіальних систем в широкому трактуванні. Тому метою цього дослідження обрано формування моделі сталого розвитку територій на основі інновацій.

Формування моделі сталого розвитку територій на основі інновацій.

У містобудуванні концепція життєвого циклу як основний методологічний підхід вивчення розвитку міст була популярною в сімдесятих–вісімдесятих роках минулого століття [5]. Хоча потім концепція сприймалась деякими дослідниками вельми критично [6], згідно з основною гіпотезою цього дослідження, саме концепція життєвого циклу є найбільш перспективною методологічною базою дослідження впливу інновацій як ключового фактору забезпечення сталого розвитку територій. Тому, на початку дослідження, визначимо базові поняття концепції життєвого циклу у сфері територіального розвитку.

Згідно одному з визначень системного аналізу [7], життєвий цикл системи - це еволюція системи від створення її концепції до вилучення системи з експлуатації. Країни, регіони та території також можуть бути розглянуті як складні системи, що складаються з набору елементів у вигляді земельних ділянок, населених пунктів, споруд, комунікацій, населення, економічного, ділового, наукового та природного середовища.

Відповідно, поняття життєвого циклу територій може бути сформульовано як керована еволюція територіальної системи від моменту її утворення до цілковитого припинення існування.

У процесі свого розвитку будь-які території, відповідно до загальної концепції життєвого циклу, проходять певні фази. Ці фази можуть бути визначені як обмежені у часі відірвізки життєвого циклу територій з однорідними переважаючими тенденціями у зміні економічних, екологічних чи соціальних груп показників розвитку територій.

Розглядаючи життеві цикли населених пунктів, дослідник і практик П. Орєховський [8] виділив наступні основні фази життєвого циклу:

1) інтенсивне зростання - збільшення потенціалу доступності до суспільних благ, коли зростання виробництва випереджає зростання населення у регіоні;

2) уповільнене зростання - випередження зростання населення над розвитком виробництва, темпами будівництва житла та рівнем інших благ;
3) стагнація - економічний спад в секторі первинного виробництва починав транслюватися на всю економіку регіону;

4) занепад - мінімальний рівень суспільних благ в регіоні.

Дослідження наведеного П. Орєховським опису faz розвитку територіальних систем дозволяє стверджувати, що окремі елементи цих систем здатні дублювати тенденції розвитку інших елементів цієї ж системи. Це, у свою чергу, дозволяє говорити про наявність кореляції між значеннями показників їхнього розвитку. У такому випадку, можна знайти «первинні» фактори розвитку, які задаватимуть тренд розвитку для «вторинних».

Наприклад, відкриття рудної шахи ресурсів (як «первинний» фактор розвитку) здатне спричинити приплив інвестицій на їх видобуток, що дасть поштовх для активізації «вторинних» факторів розвитку – розширення житлового будівництва та обслуговуючої сфери для робітників добувної промисловості.

Важливою характеристикою для забезпечення сталого розвитку територіальної системи в цілому є часовий лаг між початком спаду показників розвитку «первинного» фактору, та спадом розвитку вторинних факторів, позначений як Δt на рис. 1. Він показує здатність території акумулювати вкладені в неї ресурси та виступає своєрідним «буфером», пом'якшуючи збурення у зовнішньому оточенні територіальної системи, викликани коливаннями попиту на продукцію «первинного» сектора та ін.

Рис. 1. Сталий розвиток території за життєвими циклами «первинних» та «вторинних» факторів розвитку

Джерело: [Розроблено авторами]
повинна ініціювати вивільнення нового потенціалу для розвитку, що забезпечить об’єктив управління перехід до наступного життєвого циклу, заснованого на наступному «первинному» факторі розвитку. Тобто забезпечить territorіальній системі її сталий розвиток, що проілюстровано на рис. 1.

Саме інновації на цьому етапі здатні створити необхідний потенціал для розвитку. Це підтверджується концепцією універсальної еволюції, що розглядає еволюцію як перманентний інноваційний процес, в якому за рахунок введення нового в систему відбувається підвищення складності та міри стійкості останньою до несприятливих факторів навколишнього середовища.

Тому пропонується наступне визначення: модель сталого розвитку територій на основі інновацій – це модель розвитку, в якій збалансований розвиток економічної, екологічної та/або соціальної сфери базується на інноваціях та забезпечується з використанням інноваційних методів управління розвитком територій. (див. рис. 2).

Рис. 2. Загальна модель сталого розвитку територій на основі інновацій
Джерело: [Розроблено авторами]

На відміну від існуючого визначення сталого інноваційного розвитку територій [9], основою сталого розвитку, на думку авторів цього дослідження, повинен стати не перехід від одного стійкого стану системи до іншого в результаті впровадження інновацій, а саме забезпечення збалансованого зростання трьох основних сфер территоріальної системи, що базується на інноваціях.

Висновки дослідження.

В ході даного дослідження було запропоновано визначення життєвого циклу розвитку територій та його складових фаз. Методологічна основа концепції життєвого циклу дозволила виділити «первинні» та «вторинні» фактори розвитку територій, на базі яких було сформульовано підхід
забезпечення сталого розвитку територій як послідовної зміни фаз зростання «первинних» факторів розвитку.

Також було встановлено роль інновацій для вивільнення нового потенціалу розвитку «первинних» факторів та забезпечення сталого розвитку територій.

Отримана в ході дослідження модель сталого розвитку територій на основі інновацій встановлює мету розробки та впровадження інновацій за кожною зі сфер сталого розвитку, а також визначає роль організаційно-управлянських інновацій для забезпечення збалансованого розвитку економічної, соціальної та екологічної сфери. На базі наведеної моделі пропонується здійснювати формування стратегій сталого розвитку територій, що об’єднують в одному стратегічному документі економічну, соціальну та екологічну стратегію розвитку, а також дозволять збалансувати територіальні розвиток у цих трьох сферах, що складає практичну значущість пропонованої моделі.

Література:
9. Ніконова Я.І. Теоретико-методологічні основи сталого інноваційного розвитку малих міст. Росія: тенденції і перспективи розвитку, № 6(2), С. 499-504.
Abstract. The modern development experience of some countries shows that innovations are capable of acting as a powerful key factor in the region development. In existing methodological documents of territorial development strategies making does not specific methods of territorial development sustainability ensuring and the place of innovation in this process.

Problem Statement. Determining the innovation role in ensuring the territorial systems sustainable development is an actual topic of research. The sustainable territorial development model formation on the innovations basis was chosen as a research goal. The methodological basis of the research are the sustainable development and life cycle concepts, tools and methods of modern innovation. The definitions of the territorial development life cycle and their constituent phases was proposed during the study. The "primary" and "secondary" factors of territorial development were also identified. Based on these factors, the approach of ensuring the sustainable territorial development as a consequent change of "primary" development factors growth phases is formulated, which is provided by the introduction of innovations. The obtained model of sustainable territorial development based on innovations, sets the goal of innovations development and implementation for each of the sustainable development sphere, as well as determines the role of organizational and managerial innovations in ensuring balanced development of the economic, social and environmental spheres. The proposed model of sustainable territorial development
formalizes the innovations role in ensuring territorial development sustainability. It can be used as a territorial development strategies formation basis, combining economic, social and ecological strategies of innovation development in one strategic document, which allow to balance territorial development in these three spheres.

Key words: model of sustainable territorial development, innovations, life cycle of territories development.
LOCATION CONTROL BY SPECIALIZED COMPUTER NETWORKS

ВИЗНАЧЕННЯ МІСЦЕЗНАХОДЖЕННЯ ОБ’ЄКТІВ КОНТРОЛЮ ЗА ДОПОМОГОЮ СПЕЦІАЛІЗОВАНІХ КОМП’ЮТЕРНИХ МЕРЕЖ

Babchuk S.M. / Бабчук С.М.
c.t.s., as.prof. / к.т.н., доц.
ORCID: 0000-0002-1746-5731
SPIN: 0000-0000-6899-7043
Ivano-Frankivsk National Technical University of Oil and Gas,
Ivano-Frankivsk, Karpatska 15, 76019
Івано-Франківський національний технічний університет нафти і газу,
Івано-Франківськ, Карпатська 15, 76019

Анотація. Проаналізовано спеціалізовані комп’ютерні мережі. Встановлено, що для визначення місцезнаходження об’єктів контролю можна використати безпровідні спеціалізовані комп’ютерні мережі LTE-M та Nb-IoT. Перевагою створення систем визначення місцезнаходження об’єктів контролю на базі даних мереж є можливість використання для їх розгорнання наявної інфраструктури операторів мобільного зв’язку (у яких в даний час є покриття практично у всіх районах, де здійснюється активна господарська діяльність). Крім того, кінцеві пристрої мереж LTE-M, Nb-IoT можуть автономно працювати понад 10 років від невеликих батарейок.

Ключові слова: безпровідна спеціалізована комп’ютерна мережа, промислова мережа, fieldbus, Wireless, LTE-M, Nb-IoT.

Вступ.

В даний час в роботі підприємств різних галузей спостерігається тенденція в напрямку їх укрупнення і розподілення на великих територіях. При цьому часто виробничі потреби вимагають оперативно перерозподіляти ресурси між наявними підрозділами, які можуть знаходитись в різних місцях. Сьогодні збір інформації про наявні матеріально-технічні цінності та їх розташування в певний момент часу виконується малоекфективними застарілими методами (вручну працівниками складів, бухгалтерій, економічних відділів та виробничих підрозділів) [1]. Для збереження керованості підприємством і забезпечення умов для прийняття необхідних управлінських рішень, керівництву підприємства потрібно повно повною інформацією про наявні ресурси та відповідне їх місце розташування в структурних підрозділах. Тому важливою задачею є створення систем визначення місцезнаходження об’єктів контролю в режимі “реального часу” [1].

Основний текст.

В даний час в країнах Західної Європи та в США широко використовуються різноманітні спеціалізовані комп’ютерні мережі [1-9].

В результаті проведеного аналізу існуючих спеціалізованих комп’ютерних мереж встановлено, що для визначення місцезнаходження об’єктів контролю в режимі “реального часу” можна створити такі системи на базі безпровідних спеціалізованих комп’ютерних мереж LTE-M та Nb-IoT [10-14].

LTE-M (Long Term Evolution for Machines) є спрошенням промисловим терміном для стандарту LTEA-MTC LPWA, який опублікований групою 3GPP.
LTE-M - це технологія з низьким енергоспоживанням, яка підтримує IoT (Internet of Things). Менша складність кінцевих пристроїв (для широкого спектра завдань) мережі LTE-M дозволяє збільшити термін служби батареї до 10 років та більше.

Підтримувані всіма основними виробниками мобільного обладнання, набори мікросхем і модулів для мережі LTE-M можуть співпрацювати з мобільними мережами 2G, 3G, 4G і можуть використовувати всі функції безпеки мобільних мереж, такі як підтримка конфіденційності ідентифікації даних користувачів, автентифікація об'єкта, конфіденційність, цілісність даних та ідентифікація мобільного обладнання.

NB-IoT (NarrowBand IoT) – є мережею Low Power Wide Area Network, яка розроблена щоб широкий спектр пристроїв міг бути з'єднаний за допомогою стільникових каналів передавання даних. Мережа NB-IoT використовує вузькосмугову радіопередачу даних і призначена для інтернету речей (IoT).

Мережа NB-IoT була затверджена групою 3GPP (Release 13) в червні 2016 року.

Мережа NB-IoT приділяє особливу увагу якості покриття всередині приміщень, низькій вартості, тривалому терміні роботи батареї і дозволяє підключити велику кількість пристроїв.

Основні характеристики мереж LTE-M та Nb-IoT відображено в таблиці 1.

<table>
<thead>
<tr>
<th>Назва характеристики</th>
<th>Назва мережі</th>
</tr>
</thead>
<tbody>
<tr>
<td>Швидкість передавання даних</td>
<td>LTE-M</td>
</tr>
<tr>
<td>Термін роботи кінцевого пристрою від однієї батарейки</td>
<td>більше 10 років</td>
</tr>
<tr>
<td>Частота на якій передаються дані</td>
<td>1,4 МГц</td>
</tr>
<tr>
<td>Режим передавання даних</td>
<td>напівдуплексний, дуплексний</td>
</tr>
<tr>
<td>Можлива сфера використання</td>
<td>Відстеження: мотоциклів, велосипедів, автомобілів, вантажних причепів, контейнерів, дітей, домашніх тварин, цінних активів та речей</td>
</tr>
</tbody>
</table>

Таблиця 1
Елементи безпровідних спеціалізованих комп’ютерних мереж LTE-M та Nb-IoT є компактними (легкими і маленького розміру), що дозволяє їх інтегрувати з практично будь-яким об’єктом контролю.

Безпровідні спеціалізовані комп’ютерні мережі LTE-M та Nb-IoT можна використовувати для визначення місцезнаходження об’єктів контролю: мотоциклів, велосипедів, автомобілів, вантажних причепів, контейнерів, дітей, домашніх тварин, цінних активів та речей.

Висновки.
Проаналізовано спеціалізовані комп’ютерні мережі. Встановлено, що для визначення місцезнаходження об’єктів контролю можна використати безпровідні спеціалізовані комп’ютерні мережі LTE-M та Nb-IoT.

Перевагою створення систем визначення місцезнаходження об’єктів контролю на базі мереж LTE-M та Nb-IoT є можливість використання для їх розгортання наявної інфраструктури операторів мобільного зв’язку (у яких в даний час є покриття практично у всіх районах, де здійснюється активна господарська діяльність).

Ще однією позитивною характеристикою є те, що кінцеві пристрої мереж LTE-M, Nb-IoT можуть автономно працювати понад 10 років від невеликих батарейок.

Безпровідні спеціалізовані комп’ютерні мережі LTE-M, Nb-IoT можна використовувати для визначення місцезнаходження об’єктів контролю: мотоциклів, велосипедів, автомобілів, вантажних причепів, контейнерів, дітей, домашніх тварин, цінних активів та речей.

Література:

References:

9. Babchuk S.M. Kontrol materialno-tekhchnichnykh tsninnostei na obiektakh naftohazovoho
Abstract. Analyzed specialized computer networks. It is established that for locating objects of control it is possible to use wireless specialized computer networks LTE-M, Nb-IoT. The advantage of creating systems for locating control objects on a network of databases is the possibility of using them to deploy existing infrastructure of mobile operators (which now has coverage in almost all areas where active business activity is carried out). In addition, LTE-M, Nb-IoT terminal devices can operate autonomously for more than 10 years from small batteries.

Key words: wireless specialized computer network, industrial network, fieldbus, wireless, LTE-M, Nb-IoT.
IDENTIFICATION OF THE INDICATORS OF THE HEALTH OF UKRAINE’S POPULATION ON THE BASIS OF MARKETING RESEARCHES (MODEL OF MENTALIZATION)

Perevozova Iryna / Переверзова І.В.
doctor of economics, professor / доктор економічних наук, професор
Ivano-Frankovsk National Technical University of Oil and Gas
Ivano-Frankivsk, Ukraine, 76000
Ивано-Франковский национальный технический университет нефти и газа
Orcid ID: 0000-0002-3878-802X
SPIN: 9680-9056

Hrechanyk Nataliia / Гречанюк Н.Ю.
PhD in Economics, as.prof. / кандидат економічних наук, доцент
Vasyl Stefanyk Precarpathian National University
street Shevchenko, 57, Ivano-Frankivsk, Ukraine, 76018
Прикарпатский национальный университет имени Василия Стефаника
Orcid ID: 0000-0002-1454-4936

Pyuryk Markiyan / Пюрык М.В.
Candidate of Medical Sciences / кандидат медичних наук
Ivano-Frankivsk National Medical University
Galytska str. 2, Ivano-Frankivsk, Ukraine, 76018
Ивано-Франковский национальный медицинский университет
Orcid ID: 0000-0002-6065-831X

Abstract. Human health is the most important socio-economic value of any state. The condition of health of the population is one of the most important indicators of the well-being of the nation.

The sphere of public health is one of the priority directions of state policy and national security in general. Important directions of modern health care reform are optimization of management, rational distribution of limited financial resources, efficient use of material resources, introduction of health insurance, restructuring of medical and preventive care to the population.

The summation of socio-economic relations in the health care sector forms the market of medical services. In this area, marketing can be defined as a complex process of planning, economic substantiation and management of the process of provision of medical services, the formation of a pricing policy for the treatment and prevention process, ensuring effective communication with patients.

Marketing studies are the most important components of the analysis of any market, including the market of medical services. In this market, their conduct is complicated in terms of the very methodology of conducting and analyzing the results, in particular with the aim of formulating proposals for the effective activity of the subjects on it, as well as identifying health indicators of the population of Ukraine.

The purpose of the study is to identify the health status of the population and determine the factors of demand for medical services and their demand.

The main task set before market research on identifying the health of the population based on the model of self-esteem is the formation and provision of benefits to consumers that meet their needs for qualified medical care and improve the quality of life of each patient in particular.

The research methods used in the work are based on a probabilistic, stratified, quota, representative sample for the entire population in Ivano-Frankivsk, Ukraine.

The obtained results form the realistic representation of the main tendencies in the field of
medical services in Ukraine and allow identification of the indicators of the health status of the population based on the model of self-evaluation, assessment of the potential of socio-economic adaptation of the population in the context of the economic crisis in obtaining medical services.

Keywords: marketing research, medical service, population health, sampling, identification, self-esteem.

Introduction. The right of every citizen of Ukraine to protect health, medical care and health insurance is enshrined in the Constitution (Article 49 [1]). It established that in state and communal health care facilities, medical care is provided free of charge (Part 3 of Article 49 [1]). The meaning of the concept of "medical service" in the Constitution, as well as in other regulatory documents, which regulates the health sphere, is not disclosed, so when interpreting this concept, it is often identified with the term "medical care". Conceptual uncertainty has not been eliminated until today not only in nominative documents, but also in medical, economic literature.

We believe that the concept of "medical care" is much broader than its content and scope of activities for the concept of "medical activity", which is understood as a complex of measures aimed at health protection, preservation of human life and quality, prevention of diseases that are being carried out workers of health care institutions of any form of ownership, or medical workers who provide their services on a fee basis, engaging in private practice. That is, the meaning of the term "medical service" is included in the term "medical care".

The medical service has all the specific characteristics of the services: immaterial (absence of commodity-material embodiment), unsecure (can not be obtained for the purpose of inflation savings), inseparability from the source of the provision of services (organized place of medical services on the basis of a license for the activity of the subject of management), as well significant dependence on the human factor. In addition, the quality of medical services depends on the existing material and technical base, innovative technological solutions, staffing, qualifications of medical staff, and psychological mood of the patient. The result of the activity of medical services is the effect of preservation and strengthening of health, physiological and psychological comfort of the individual.

During the last decade in Ukraine, there is a milder of cases of diseases and the first diagnosis in life. In 2017, a general indicator of the structure, prevalence of classes of diseases and individual diseases among the population of Ukraine during visits to health care facilities amounted to 171 376 cases per 100,000 people [10]. However, the negative dynamics of the health of the Ukrainian population is
accompanied by a gradual (from 2005) decrease in mortality [11, 12], which can to some extent characterize the attitude of the population to their health as a matter of indifference.

Table 1.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total dead</th>
<th>Mortality rate (per 1000 people)</th>
<th>The country's population</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>781 961</td>
<td>16.6</td>
<td>47280811</td>
</tr>
<tr>
<td>2006</td>
<td>758 092</td>
<td>16.2</td>
<td>46929598</td>
</tr>
<tr>
<td>2007</td>
<td>762 877</td>
<td>16.4</td>
<td>46646097</td>
</tr>
<tr>
<td>2008</td>
<td>754 460</td>
<td>16.3</td>
<td>46372799</td>
</tr>
<tr>
<td>2009</td>
<td>706 739</td>
<td>15.3</td>
<td>46143714</td>
</tr>
<tr>
<td>2010</td>
<td>698 235</td>
<td>15.2</td>
<td>45962947</td>
</tr>
<tr>
<td>2011</td>
<td>664 588</td>
<td>14.5</td>
<td>45778534</td>
</tr>
<tr>
<td>2012</td>
<td>663 139</td>
<td>14.5</td>
<td>45633637</td>
</tr>
<tr>
<td>2013</td>
<td>662 368</td>
<td>14.5</td>
<td>45553047</td>
</tr>
<tr>
<td>2014*</td>
<td>632296</td>
<td>13.9</td>
<td>45426249</td>
</tr>
<tr>
<td>2015*</td>
<td>594796</td>
<td>13.8</td>
<td>42929298</td>
</tr>
<tr>
<td>2016*</td>
<td>583631</td>
<td>13.6</td>
<td>42760516</td>
</tr>
<tr>
<td>2017*</td>
<td>574123</td>
<td>13.4</td>
<td>42584542</td>
</tr>
<tr>
<td>2018 *</td>
<td></td>
<td></td>
<td>42386403</td>
</tr>
</tbody>
</table>

* For 2014-2017, the data is provided without the temporarily occupied territory of the Autonomous Republic of Crimea, the city of Sevastopol and part of the temporarily occupied territories in the Donetsk and Luhansk oblasts

According to The World Factbook [5] prepared by the CIA for use by US officials, Crude death rate is a demographic indicator that shows the ratio of deaths to the number of available population for a certain period in Ukraine, one of the highest mortality rates in Europe (the highest is observed only in Bulgaria and Lithuania) (Table 2). This indicator is not related to the war.

Table 2.

<table>
<thead>
<tr>
<th>№</th>
<th>Country</th>
<th>Death rate (annual deaths/1,000 persons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lesotho</td>
<td>14.9</td>
</tr>
<tr>
<td>2</td>
<td>Bulgaria</td>
<td>14.5</td>
</tr>
<tr>
<td>3</td>
<td>Lithuania</td>
<td>14.5</td>
</tr>
<tr>
<td>4</td>
<td>Ukraine</td>
<td>14.4</td>
</tr>
<tr>
<td>5</td>
<td>Latvia</td>
<td>14.4</td>
</tr>
<tr>
<td>6</td>
<td>Guinea-Bissau</td>
<td>14.1</td>
</tr>
<tr>
<td>7</td>
<td>Chad</td>
<td>14.0</td>
</tr>
<tr>
<td>8</td>
<td>Afghanistan</td>
<td>13.7</td>
</tr>
<tr>
<td>9</td>
<td>Serbia</td>
<td>13.6</td>
</tr>
<tr>
<td>10</td>
<td>Russia</td>
<td>13.6</td>
</tr>
</tbody>
</table>

It should be noted that due to the protracted population mortality crisis, a conservative (archaic) structure of causes of death has been formed in Ukraine, in which a high mortality rate from endogenous causes (circulatory and neoplastic...
diseases) is combined with a no less significant mortality rate from exogenous pathologies (respiratory diseases, digestion, infectious and parasitic diseases, external causes). On average, 73.3% of all fatal cases in Ukraine today fall into three main causes of death: circulatory system diseases, external causes of death and 26 tumors. In the hierarchy of causes of death of the population of our country in 2016, as in previous years, the first five places have been occupied by the following classes: illnesses of the circulatory system, neoplasms, external causes of death, diseases of the digestive system and respiratory diseases [14].

The mortality rate, as well as on another demographic, is influenced by a whole range of factors: demographic, socio-economic, medical, natural-biological, political, ecological, ethnic, type of person's behavior, in particular, physical activity, alcohol consumption, smoking. Alcohol poisoning is one of the most common causes of premature death of Ukrainians. According to statistics, Ukrainians are more likely to die of alcohol poisoning and alcohol-related illness than to perish in road accidents.

Often, the causes of high mortality are accused of the health system of Ukraine, but only a small number of deaths can be avoided by relying entirely on it and on the achievement of medicine in general.

The list of reasons for the death of which is the responsibility of the health sector, formed by E.Nolte and M.McKee [15], is given in Table 3. The low or zero indicator of the mortality index that can be avoided serves as an indicator of the quality work of the medical system maintenance and public policy directed at public health in the relevant field.

As it follows from the table, death for these reasons is considered to be avoidable only when it occurs within the specified age category. Causes that can be prevented by public policy measures include cancer of the trachea, bronchi and lungs (since it is primarily associated with smoking), road injuries [16].

Concerning the expediency of using this method, it can be noted that the selection of causes / diseases, which can be avoided through medical treatment, disease prevention, depends on national priorities, availability of medical services and medicines, material well-being of citizens, state preventive measures, method thinking and life of the individual. So some of the deaths that today could be avoided in a developed country could not have been so half a century ago.

Today, in the globalized world, most medical technologies and drugs, research and expert opinions are de facto available on the market. Less developed countries do not use advanced technology precisely because of the lack of resources or other state priorities, rather than the availability of their own technologies [16].

Summing up, one can express the view that the avoidable mortality rate is a much more accurate outcome for the country for the functioning of existing institutions (health care development, health policy) that have a positive impact on the health of the population than total mortality rate.

It is important to emphasize that according to this method, statistical surveys have been conducted since 2005, the level of avoidable mortality is significantly underestimated, since in 2012, since Ukraine has not provided WHO mortality statistics. The countries of Europe continue to use this technique, Amenable and Predetermined deaths statistics Statistics Explained (June 2018) [17].
Table 3. Causes that can be avoided through medical treatment (Nolte and McKee, 2004) [15]

<table>
<thead>
<tr>
<th>Group name</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intestinal infections</td>
<td>0-14</td>
</tr>
<tr>
<td>2. Tuberculosis</td>
<td>0-74</td>
</tr>
<tr>
<td>3. Other infections (diphtheria, tetanus, poliomyelitis)</td>
<td>0-74</td>
</tr>
<tr>
<td>4. Pertussis</td>
<td>0-14</td>
</tr>
<tr>
<td>5. Sepsis</td>
<td>0-74</td>
</tr>
<tr>
<td>6. Rubella</td>
<td>1-14</td>
</tr>
<tr>
<td>7. Malignant tumor of the colon and rectum</td>
<td>0-74</td>
</tr>
<tr>
<td>8. Malignant tumor of the skin</td>
<td>0-74</td>
</tr>
<tr>
<td>9. Malignant tumor of the breast</td>
<td>0-74</td>
</tr>
<tr>
<td>10. Malignant tumor of the cervix</td>
<td>0-74</td>
</tr>
<tr>
<td>11. Malignant tumor of the cervix and the body of the uterus</td>
<td>0-44</td>
</tr>
<tr>
<td>12. Malignant tumor of the testicle</td>
<td>0-74</td>
</tr>
<tr>
<td>13. Hodgkin's lymphoma</td>
<td>0-74</td>
</tr>
<tr>
<td>14. Leukemia</td>
<td>0-44</td>
</tr>
<tr>
<td>15. Diseases of the thyroid gland</td>
<td>0-74</td>
</tr>
<tr>
<td>16. Diabetes mellitus</td>
<td>0-49</td>
</tr>
<tr>
<td>17. Epilepsy</td>
<td>0-74</td>
</tr>
<tr>
<td>18. Chronic rheumatic heart disease</td>
<td>0-74</td>
</tr>
<tr>
<td>19. Hypertonic disease</td>
<td>0-74</td>
</tr>
<tr>
<td>20. Coronary heart disease</td>
<td>0-74</td>
</tr>
<tr>
<td>21. Cerebrovascular disease</td>
<td>0-74</td>
</tr>
<tr>
<td>22. All respiratory diseases (with the exception of pneumonia / influenza)</td>
<td>1-14</td>
</tr>
<tr>
<td>23. Influenza</td>
<td>0-74</td>
</tr>
<tr>
<td>24. Pneumonia</td>
<td>0-74</td>
</tr>
<tr>
<td>25. Gastric ulcer</td>
<td>0-74</td>
</tr>
<tr>
<td>26. Appendicitis</td>
<td>0-74</td>
</tr>
<tr>
<td>27. Abdominal hernia</td>
<td>0-74</td>
</tr>
<tr>
<td>28. Gallbladder disease and cholecystitis</td>
<td>0-74</td>
</tr>
<tr>
<td>29. Nephritis and nephrosis</td>
<td>0-74</td>
</tr>
<tr>
<td>30. Benign hyperplasia of the prostate gland</td>
<td>0-74</td>
</tr>
<tr>
<td>31. Maternal death</td>
<td>Any</td>
</tr>
<tr>
<td>32. Congenital cardiovascular anomalies</td>
<td>0-74</td>
</tr>
<tr>
<td>33. Perinatal death for any reason</td>
<td>Any</td>
</tr>
<tr>
<td>34. Accidents during surgical operations and medical care</td>
<td>Any</td>
</tr>
</tbody>
</table>

The demand that has emerged in paid medical services in recent years is evidence of a change in the beliefs of Ukrainians about their health, moreover, it signals the dissatisfaction of people with the services provided by public health care facilities (Table 4). Table 4 shows the presence of private medical institutions in Ivano-Frankivsk (population 243.9 thousand people), Ukraine, for the period from 2005 to 2017.
Analyzing the situation on the market of private medical services in 2017 compared to 2015 and 2016 (according to preliminary research of authors) - the market is expanding and competition on it grows. At the moment, patients are most interested in the quality of service, staff qualification, individual approach, faultless service (previous appointment, early warning notice in the form of a call or SMS, a visit to the doctor without queues, the opportunity to pass all laboratory, diagnostic and therapeutic procedures in one place, clear plan of treatment). Thus, Table 1 shows that demand for private health care facilities has increased, with demand rising - the proposal has increased.

With the aim of identifying indicators of the state of health of Ukraine's population based on a model of self-esteem through market research, the authors of the study implemented it in stages.

First, they considered the state of health as a factor determining the attitude of the population towards the use of medical services in a number of parameters, in

Table 4.
Private medical institutions in Ivano-Frankivsk for 2005-2017, Ukraine

<table>
<thead>
<tr>
<th>Private medical institutions</th>
<th>Departments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxford Medical Precarpathian</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Med-Atlant</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>Gal Diagnost</td>
<td>+ + + + + + + + +</td>
</tr>
<tr>
<td>MDC «Caeroro Jyk» (Holy Luke)</td>
<td>+ + + + + + + + +</td>
</tr>
<tr>
<td>Ekstramed</td>
<td>+ + + + + + + + +</td>
</tr>
<tr>
<td>Clinically-Diagnostic Center</td>
<td>+ + + + + + + + +</td>
</tr>
<tr>
<td>Almed</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>Simedgroup</td>
<td>+ + + + + + + + +</td>
</tr>
<tr>
<td>Medservice</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>MedHouse</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>Vita</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>Asclepius</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>Arnika</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>Veramed Plus</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>Bras</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>Euromed</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>Zhyttja (Life)</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>Repobona LTD</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>Dialik</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>Damia</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>Eurodiagnostic</td>
<td>+ + + + + + + + + +</td>
</tr>
<tr>
<td>Ukrainian-Polish rehabilitation Centre Votum</td>
<td>+ + + + + + + + + +</td>
</tr>
</tbody>
</table>

ISSN 2567-5273
particular, on the benefits of dejacion (nonconsumer) or private (paid) medical care.

Secondly, we considered the relationship between self-esteem of health, defined as an adequate indicator of health status, and some socio-demographic characteristics of respondents (gender, age group, education level and income level).

Third, they analyzed the relationship between self-esteem health and the frequency of visits to the doctor during the year, including for the purpose of preventive examinations. It also established the relationship between health status and the frequency of appeals for medical assistance, including the cost of medical services.

As an empirical basis, data from a marketing study on the state of health of the population from February 2013 to March 2017 and the database of the Oxford Medical Center Ivano-Frankivsk Medical Center were used.

During the survey on the identification of the health status of respondents, self-assessment of health is used. During the survey, 2600 respondents were interviewed who gave their own assessment of their health, the distribution of the results is presented in Figure 1.

![Fig. 1. Identification of health status of respondents on the basis of self-assessment of health status, %](image)

A little more than half of the respondents, namely 54% (1404 respondents), assessed their health and well-being as mediocre, which did not correlate it with either good or bad. Some respondents, namely 14% (364 respondents), rated their health and well-being as bad; and 29% (754 respondents) - as well. Approximately equal proportions were distributed among those who identified their health as very poor - 1.4% (36 respondents) and very good - 1.6% (42 respondents).

If we compare the subjective self-esteem of a state of health with a number of objective indicators indicating the presence of chronic diseases, disabilities or nerve disorders, it becomes obvious that self-esteem improves as the proportion of
respondents suffering from chronic diseases, nerve disorders or depression, as well as respondents with disabilities. Let's consider how the identification of respondents' health indicators depends on self-esteem from socio-demographic indicators.

Regarding the indicator of self-esteem of health, in a sample with a change in age parameter, it is expected to increase the proportion of respondents who rate their health as unsatisfactory (bad and very bad), as compared to younger respondents. According to the survey, respondents aged 18 to 35 years assessed their health as unsatisfactory in 2% of cases, respondents aged 36 to 60 years old - in 10% of cases, respondents over the age of 60 - in 30% of cases (see Fig. 2).

![Fig. 2. Distribution of respondents by age on the basis of self-assessment of the state of health as unsatisfactory (very bad)](image)

Moreover, in the age group of respondents over the age of 60 there is the highest percentage of people with a very negative self-esteem of health - 8%. It is expected that the highest self-esteem of health is characteristic for the youngest group of respondents: 55% of respondents aged 18 to 35 years evaluate their health as well (of which 5% - as very good or excellent). For example, only 5% of the population over the age of 60 years evaluate their health as good, and less than 1% as excellent (very good). It should be noted that the sample was 2,600 people.

As for the division into gender identity (Figure 4), men evaluate their health more than women. The proportions of men who evaluate their health as good or very good make up 40% and 2.5%, respectively, women - 30% and 1.5% respectively. On the contrary, women often determine their health as poor and very poor (15 and 3% respectively) compared with men (8 and 1.3% respectively).

It is noteworthy that the decrease in the proportion of bad and very poor health is observed with an increase in education (Fig. 4). Of respondents with general secondary education - the proportion of bad and poor health status in the aggregate is 17.3%, of respondents with secondary specialized education - 12.1%, of respondents with higher education - 6.8%. At the same time, the proportion of respondents evaluating their health as good or very good, reaches 32.5% in the group with education in general secondary education, 33.6% in the group with secondary specialized education, 36.1% in the group with higher education.
Fig. 3. Indicators of the population's health based on self-esteem according to gender, %

Fig. 4. Indicators of the level of health of the population on the basis of self-esteem, depending on the level of education

Thus, the younger age, male sex and the availability of higher education allow respondents to more positively and optimistic about their health.

Turning to the socio-economic parameter, the distribution of the income level of the population by quintile is taken. The bottom quintile includes 20% of the least well-off respondents, the top - 20% of the richest respondents. Significant differences in self-esteem, depending on the level of personal income, are not observed (Fig. 5).
It should be noted the increase in the proportion of those who assessed their health as mediocre with an increase in personal income. Also, we can talk about a decrease in the proportion of respondents with a positive assessment of their own health to the middle quintile and its further growth.

![Fig. 5. Indicators of the level of health of the population on the basis of self-assessment, depending on the level of income]

The dependence of the frequency of visits to doctors, depending on the person's personal health status, is considered. As a rule, people who are completely satisfied with their health, are much less likely to be in health care settings than those who do not consider their health to be perfect. According to preliminary data (Fig. 6), in 2013-2017,

The highest percentage of persons - 26% (676 people) who visited medical institutions several times a month, recorded among respondents with very poor (unsatisfactory) self-esteem health.

This figure is more than twice the proportion of people with poor health who visit doctors with the same frequency - 11% (286 people). As the health self-assessment continues to improve, this indicator continues to decline and is 2.6% (65 people) for respondents with a mediocre self-esteem of their own health; 0.6% (16 people) - for respondents with a good self-esteem of health and 0.1% (2 persons) - for respondents with a high self-esteem of health.

A similar trend is observed with the frequency of visits to doctors once a month, however, in this case, the proportion of people with very poor and just poor health is 25 and 11% respectively. In another, the tendency to decrease the share of medical facilities visitors once a month in the general way repeats the above-described trend. Individuals for identifying the state of health as mediocre - apply for medical assistance once a month in 3.5% of cases, the person identifying health as good - in 0.6% of cases, a person with a distinct self-esteem of health - at 0, 1% of cases.
With the decrease in the frequency of visits to doctors during the year, the proportion of people with very poor and poor health (according to their own self-esteem) is reduced, and the percentage of those who consider their health very good and just good, on the contrary, increases. Among respondents with very poor and poor health, there are 8% and 11% of the attending physicians once a year; at the same time, respondents with good and very good health refer to medical institutions once a year at 34% and 27% of cases respectively. Those who evaluate their health as mediocre, often visit doctors two or three times a year (35% of cases).

The frequency of visits to doctors is directly related to visits to health facilities for the purpose of preventive examination (Fig. 7). Respondents who conduct preventive examinations regularly - 21.5% of their total number; respondents who ignore preventive examinations - 18.5% and 60% - the proportion of respondents who occasionally visit irregular prophylactic examinations. In general, 45% of those who underwent prophylactic reviews regularly did not find any problems.

Of the 570 respondents from the quota sample, which used the database of the private medical center "Oxford Medical Precarpathian", Ivano-Frankivsk, to the question of whether they had health problems over the past thirty days - 45% (256 people) indicated the presence of similar problems. Health problems described by respondents were classified according to the international classification of diseases; the classification results are presented in Table 2. It should be noted that the classification [10] did not include all the health problems reported by the respondents (39 people), since some of them were described too blurred and unambiguous identification, some were faster a number of symptoms for which it was impossible to identify the disease. Thus, 531 samples of this sample were classified.
Fig. 7. Distribution of respondents on the frequency of preventive examinations

Table 5.

Distribution of respondents' requests according to the International Classifier of Diseases (N-570)

<table>
<thead>
<tr>
<th>International Classification of Diseases</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious and parasitic diseases</td>
<td>6</td>
<td>1,1</td>
</tr>
<tr>
<td>Oncological Disease</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>Diseases of the blood</td>
<td>7</td>
<td>1,3</td>
</tr>
<tr>
<td>Diseases of the endocrine system are dietary disorders and metabolic disorders</td>
<td>12</td>
<td>2,3</td>
</tr>
<tr>
<td>Mental disorders and behavioral disorders</td>
<td>11</td>
<td>2,1</td>
</tr>
<tr>
<td>Diseases of the nervous system</td>
<td>7</td>
<td>1,4</td>
</tr>
<tr>
<td>Diseases of the eye</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>Diseases of the ear</td>
<td>29</td>
<td>5,4</td>
</tr>
<tr>
<td>Diseases of the cardiovascular system</td>
<td>118</td>
<td>22,4</td>
</tr>
<tr>
<td>Diseases of the respiratory system</td>
<td>94</td>
<td>17,5</td>
</tr>
<tr>
<td>Diseases of the digestive system</td>
<td>67</td>
<td>12,7</td>
</tr>
<tr>
<td>Diseases of the skin</td>
<td>87</td>
<td>16,3</td>
</tr>
<tr>
<td>Diseases of the genitourinary system</td>
<td>90</td>
<td>17,1</td>
</tr>
<tr>
<td>Problems associated with pregnancy, childbirth and the postpartum period</td>
<td>1</td>
<td>0,2</td>
</tr>
<tr>
<td>Other</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>570</td>
<td>100</td>
</tr>
</tbody>
</table>

As can be seen from the table, 4, the largest proportion of diseases belongs to the class of diseases of cardiovascular diseases (22,4%). Further, according to the rating - respiratory diseases (17,5%), diseases of the genitourinary system (17,1%) and skin diseases (16,3%), diseases of the digestive system (12,7%).

Distribution of respondents according to the degree of complexity (incurable, difficult to learn) of disease states and the level of self-assessment of health are presented in Fig. 8. Respondents evaluated for their health, whose disease was classified, amounted to 531 people, hence the sample will be the same. The
proportion of respondents suffering from incurable and seriously ill diseases, as well as diseases with pain symptoms or a long period of treatment, decreases with the increase of the index of health status to positive. In total, the proportion of such diseases is reduced in 31% of the people with the lowest self-esteem of health to 3.1% of the people with the highest self-esteem of health, and in the last group of respondents, complicated diseases were not detected at all. The highest proportion of respondents with minor illnesses among those who evaluate their health as well (81%). Of the 531 respondents who had a health problem during the previous thirty days, 35% were seeking help from medical institutions. Moreover, the worse was the self-esteem of health, the more often the respondents sought medical assistance.

Among those who defined their health as very poor (unsatisfactory) and poor, they visited the doctors accordingly - 52.4% and 44.7% of respondents. Respondents evaluating their health as well and very well, turned to doctors with approximately the same frequency, that is, in 26% of cases (Fig. 9).

One of the important questions for respondents was the following: "In the case of a health problem that you prefer to provide health care facilities?" The responses were as follows: to the state (outpatient clinics and outpatient departments of hospitals) - 37% apply, to private - 23 %, on the recommendation of friends, relatives - 40%. There are isolated cases when a person is resorting to a combination of services of private institutions, clinics and outpatient departments of hospitals, etc.
It was important to determine why people chose this or that facility for medical care. Of the total number of respondents, 20.7% - answered that the chosen institution has better service; 31% answered that affordable prices; 6.9% - lack of queues; 41.4 - are convinced that they will receive better attention and appropriate treatment (Fig. 11).

The vast majority of respondents sought medical assistance within the framework of the state health care system, that is, on a free basis. Among those who identified their own health on the basis of self-esteem as very poor, there were 38%, bad - 33%, mediocre - 14%, good - 12%, and finally, very well - 3%.

Comparing the indicator of free medical treatment for the last two groups of respondents, it should be noted that the transition from the assessment of "good" to "very good" in the self-assessment of health is accompanied by the most significant decrease in the proportion of respondents using medical services within the state medical help.
Comparing the benefits of receiving health care services on a paid or free basis, the share of paid medical services is higher in the upper quintile, while the proportion of respondents who prefer to receive free medical care increases as the lower income groups move (Table 6).

Table 6.

<table>
<thead>
<tr>
<th>Appeal to medical institutions per quintile of income per capita, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical institutions</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Only free</td>
</tr>
<tr>
<td>Only paid</td>
</tr>
<tr>
<td>Free and paid</td>
</tr>
</tbody>
</table>

Taking into account the results presented in the authors' data on the identification of health indicators of Ukraine on the basis of self-assessment by marketing research, the medical centers use their results in the practice of providing medical services to the population of Ivano-Frankivsk and other regions.

Conclusions.
The stages identified in this article for identifying indicators of the health of the population based on the model of self-esteem through market research can be further extended to the level of a complex methodology, the application of which will contribute not only to improving the efficiency of management of institutions providing medical services but also to continuous monitoring health indicators to optimize health care reform and rational allocation of budget resources.
The results of the study on the relationship between self-esteem health and the frequency of appeals for medical treatment illustrate the attitude of the population towards the use of medical services in a number of parameters for state (free) and private (paid) medical services, which will increase the level of provision of medical services.

References
11. Derzhavna služhba statystyky Ukrayini [Elektronnyj resurs]. – Available at: http://www.ukrstat.gov.ua/
14. Shhorichna dopovid pro stan zdorovya naselennya, sanitarno-epidemichnu sytuaciyu ta rezultaty diyalnosti systemy oxorony zdorovya Ukrayiny. 2016 rik /
Здоров'я людини – найважливіша соціально-економічна цінність будь-якої держави. Стан здоров'я населення є одним із найважливіших показників благополуччя нації.

Сфера охорони здоров'я є одним із пріоритетних напрямів державної політики та національної безпеки загалом. Важливими напрямками сучасних реформ охорони здоров'я є
оптимізація управління, раціональний розподіл обмежених фінансових ресурсів, ефективне використання матеріальної бази, впровадження медичного страхування, реструктуризація лікувально-профілактичної допомоги населенню.

Суккупність соціально-економічних відносин у сфері охорони здоров’я формують ринок медичних послуг. У цій сфері маркетинг можна визначити як комплексний процес планування, економічного обґрунтування та управління процесом надання медичних послуг, формування ціної політики лікувально-профілактичного процесу, забезпечення ефективної комунікації з пацієнтами.

Найважливішими складовими аналізу будь-якого ринку, в тому числі і ринку медичних послуг, є маркетингові дослідження. На даному ринку їх проведення є складним з точки зору самої методології проведення та аналізу результатів, зокрема з метою формулювання пропозицій щодо ефективної діяльності суб’єктів на ньому, а також ідентифікації показників здоров’я населення України.

Мета дослідження - ідентифікація стану здоров’я населення та визначення факторів попиту на медичні послуги та їх затребуваність.

Основним завданням, яке ставилось перед проведенням маркетингових досліджень ідентифікації стану здоров’я населення на підставі моделі самооцінки є формування і надання споживачам благ, які задовольняють їхні потреби в кваліфікованій медичній допомозі та підвищення якості життя кожного пацієнта.

Методи дослідження, що використані в роботі, базуються на імовірнісній, стратифікованій, квотній, репрезентативній вибірках для всього населення у місті Івано – Франківськ, Україна.

Отримані результати формують реалістичне відображення основних тенденцій на царині медичних послуг в Україні та дозволяють провести ідентифікацію показників стану здоров’я населення на підставі моделі самооцінки, оцінювання потенціалу соціально-економічної адаптації населення в умовах економічної кризи способно отримання медичних послуг.

Ключові слова: Маркетингові дослідження, медична послуга, стан здоров’я населення, вибірка, ідентифікація, самооцінка.
УДК 621
CALCULATION OF HEAT AND MASS-EXCHANGE PROCESSES IN ELECTRIC MACHINES
РАСЧЕТ ТЕПЛОМАССООБМЕННЫХ ПРОЦЕССОВ В ЭЛЕКТРИЧЕСКИХ МАШИНАХ

Koren E.V. / Корень Е.В.
master's degree / магистр
ORCID: 0000-0002-6472-3406
Kherson State Agrarian University,
Kherson, Stretenskaya 23, 73006

Херсонский государственный аграрный университет,
Херсон, ул.Стретенская 23, 73006

Аннотация. В работе рассматривается пример теплового расчета, основанного на методе тепловых схем замещения. В результате его использования определяются средние превышения температуры отдельных элементов электрических машин.

Ключевые слова: тепловое сопротивление, электрическая цепь, потери мощности, электрические потери, механические потери, магнитные потери.

Вступление.
Электромеханическое преобразование энергии в электрических машинах сопровождается преобразованием электрической или механической энергии в тепло. Какова же часть энергии теряется бесполезно, и каким образом можно снизить эти потери? Для ответа на поставленные вопросы сначала выясним, какие возникают потери энергии при работе электрических машин, а затем приведем пример теплового расчета, основанного на методе тепловых схем замещения. Данный метод использует понятия тепловых сопротивлений, рассчитываемых по правилам для электрических цепей (законам Кирхгофа). Он получил широкое распространение при проектировании электрических машин, в результате его использования определяются средние превышения температуры отдельных элементов. Мощность потерянной энергии называют потерями мощности или просто потерями. Потери в электрических машинах подразделяются на основные и добавочные [1]. Основные потери возникают в результате происходящих в машине основных электромагнитных и механических процессов, а добавочные потери обусловлены различными вторичными явлениями. Во вращающихся электрических машинах основные потери подразделяются на:
1) механические потери,
2) магнитные потери, или потери в стали,
3) электрические потери.
Механические потери состоят из:
1) потерь в подшипниках,
2) потерь на трение щеток о коллектор или контактные кольца и
3) вентиляционных потерь, которые включают в себя потери на трение частей машины о воздух и другие потери, связанные с вентиляцией машины (мощность кинетической энергии отходящего воздуха и потери в вентиляторе).
В ряде случаев электрические машины охлаждаются не воздухом, а водородом или водой, и соответствующие потери также относят к вентиляционным. Потери в подшипниках зависят от типа подшипников (качения или скольжения), от состояния трущихся поверхностей, вида смазки и т.д. Потери на вентиляцию зависят от конструкции машины и рода вентиляции. В каждой данной машине механические потери определяются суммой трех видов потерь и зависят только от скорости вращения и не зависят от нагрузки [1].

Магнитные потери возникают в себе потери на гистерезис и вихревые токи, вызванные перемагничиванием сердечников активной стали.

Электрические потери возникают в обмотках. Они определяются их сопротивлениями, зависящими от температуры.

Для увеличения коэффициента полезного действия эксплуатируемых электрических машин необходимо знать максимально допустимые средние превышения температуры их элементов. Применение метода эквивалентных тепловых схем замещения в методике теплового расчета позволяет нам это сделать.

Основной текст. В тепловом расчете электрической машины ставится задача определить превышение температуры различных частей машины над температурой охлаждающей среды. Превышение температуры частей электрической машины над температурой охлаждающей среды определяется выражением

\[\Delta \theta = \theta - \theta_{\text{ох}} \],

где \(\theta \) - температура рассматриваемой части электрической машины;
\(\theta_{\text{ох}} \) - температура охлаждающей среды.

В общем случае передача тепла идет тремя путями: теплопроводностью, конвекцией и излучением.

Основными источниками выделения тепла в электрической машине являются обмотки, стальные части магнитной цепи и конструктивных элементов, в которых возникают потери от перемагничивания. Необходим также учет нагрева скользящего контакта. Механические потери, включая вентиляционные, обычно имеют меньшее значение.

На пути движения тепловых потоков от источника тепла происходит перепад температуры в активных частях машины, толще изоляции и между охлаждающими поверхностями и охлаждающей средой. В тепловом расчете определяются эти внутренние перепады и превышения температуры внешней поверхности охлаждаемых частей электрической машины над температурой охлаждающего воздуха. При непосредственном соприкосновении материала обмоток с охлаждающей средой, т.е. при непосредственном охлаждении проводников обмотки, определяется превышение температуры металла обмотки над температурой охлаждающего газа или жидкости.

Перепадом температуры в толще металла обмотки и магнитопровода часто пренебрегают, так как теплопроводность металлов в сотни раз больше теплопроводности изоляции.
В практических расчетах ограничиваются определением среднего превышения температуры обмоток, т.е. допускают, что температура обмоток в стали пакетов статора (ротора) в рассматриваемых объемах постоянна.

Отвод тепла с поверхности нагретого тела происходит путем излучения в окружающее пространство (лучеиспусканием), передачи тепла путем теплопроводности, передачи его путем конвекции.

В чистом виде теплопередача путем излучения может иметь место, если нагретая поверхность находится в вакууме. Теплопередача путем теплопроводности воздуха (или другого газа) настолько мала, что ее практически невозможно учесть.

Конвективная теплопередача обусловлена нагревом воздуха, соприкасающегося с нагретой поверхностью электрической машины и вследствие этого совершающего восходящее движение. Его место занимает более холодный воздух, который, в свою очередь, нагревается и движется вверх. Конвективную теплопередачу сильно повышает принудительное увеличение скорости движения воздуха (искусственный обдув нагретой поверхности). В практических расчетах нагрева электрических машин обычно применяют упрощенные формулы, определяющие перепад температуры между нагретой поверхностью и охлаждающим газом, которые учитывают все виды теплоотдачи с поверхности, имеющие место при охлаждении электрических машин.

Для применения законов Кирхгофа устанавливается соответствие между электрическими параметрами цепи и теплотехническими параметрами схем замещения электрических машин (таблица 1).

Применяя метод тепловых схем замещения, можно использовать как понятия тепловых сопротивлений, так и тепловых проводимостей, рассчитываемых по правилам для электрических цепей. Как уже было отмечено, применение тепловых схем замещения дает возможность определять средние температуры частей электрической машины, принимаемых за однородные тела.

Таблица 1

<table>
<thead>
<tr>
<th>Величины, соответствующие электрическим схемам</th>
<th>Величины, соответствующие тепловым схемам</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сила тока I, A</td>
<td>Тепловой поток Q, Вт</td>
</tr>
<tr>
<td>Сопротивление R, Ом</td>
<td>Сопротивление R, °С/Вт</td>
</tr>
<tr>
<td>Напряжение U, В</td>
<td>Разность средних температур 1-й и 2-й частей машины (\theta_1 - \theta_2), °C</td>
</tr>
</tbody>
</table>

Второй закон Кирхгофа для электрических цепей определяется выражением

\[
\sum I_k R_k = \sum \varepsilon_k ,
\]

где \(I_k \) – силы токов в ветвях цепи, A;
Р_{k} – сопротивления ветвей цепи, Ом;
\varepsilon_{k} – электродвижущие силы источников тока, В.

Для каждой части тепловой схемы справедливо основное уравнение

\[\theta_1 - \theta_2 = Q_{12} R_{12}, \]

где \(Q_{12} \) - тепловой поток между точками 1 и 2 схемы, представляющими 1-ю и 2-ю части машины, Вт;
\(\theta_1, \theta_2 \) - средние температуры этих частей, °C;
\(R_{12} \) - тепловое сопротивление между точками 1 и 2 схемы, °С/ Вт [3].

Естественно, что чем большее число эквивалентных элементов может быть предложено для замены отдельных частей электрической машины, тем точнее окается расчет. Однако усложнение тепловой схемы, а следовательно, и расчета должно сочетаться с достижимой точностью расчета при имеющейся неопределенности исходных данных.

На примере статора машины переменного тока рассмотрим построение тепловой схемы замещения [2, 3]. Разбиваем статор на три условно однородные в тепловом отношении тела, являющиеся источниками тепла: пазовая часть обмотки статора с потерями \(P_{p} \), две стороны лобовых частей с суммарными потерями \(P_{l} \) и стальной сердечник статора с потерями \(P_{c} \).

Каждая часть создает тепловые потоки. Считая в общем случае, что условия охлаждения рассматриваемых частей машины различные, принимаем четыре пути рассеяния тепла (рис.1,a): \(Q_{из} \) – тепловой поток к стенкам зубцов сердечника с перепадом температуры в тепловом сопротивлении пазовой изоляции \(R_{из} \); \(Q_{к} \) – тепловой поток к охлаждающему воздуху в радиальных вентиляционных каналах через тепловое сопротивление \(R_{к} \); \(Q_{пр}^{prime} \) и \(Q_{пр}^{second} \) - тепловые потоки от пазовой части обмотки с перепадом температуры в тепловых сопротивлениях \(R_{пр}^{prime} \) вдоль проводников обмотки. Лобовые части обмотки рассеивают со своих поверхностей тепловые потоки \(Q_{l}^{prime} \) и \(Q_{l}^{second} \) с перепадом температуры в тепловых сопротивлениях \(R_{l}^{prime} \). Поверхности сердечника статора рассеивают тепловые потоки \(Q_{c}^{prime} \) и \(Q_{c}^{second} \) с боковых сторон пакетов с перепадом температуры в тепловых сопротивлениях \(R_{c}^{prime} \) и поток \(Q_{c,р} \) в радиальном направлении с наружной поверхности ярма статора и внутренней поверхности статора при общем тепловом сопротивлении \(R_{c,р} \).

В случае одинаковой температуры охлаждающего воздуха у теплорассеивающих поверхностей тепловой расчет можно вести по схеме замещения, приведенной на рис.1,b. В этом случае тепловые сопротивления \(R_{пр} \), \(R_{c} \) представляют собой параллельно соединенные сопротивления \(R_{пр}^{prime} \) и соответственно \(R_{c}^{prime} \):

\[R_{пр} = R_{пр}^{prime} / 2; \quad R_{c} = R_{c}^{prime} / 2, \]

а сопротивление \(R_{c} \) – параллельно соединенные сопротивления \(R_{c}^{prime} \) и \(R_{c,р} \).

ISSN 2567-5273 37 www.moderntechno.de
В схеме на рис.1,6 имеется восемь неизвестных: θ_n, θ_x, θ_c — средние температуры пазовой части обмотки, лобовых частей и сердечника статора; Q_{iz}, Q_{np}, Q_{k}, Q_{l} и Q_{s} — тепловые потоки, упомянутые выше. Для определения этих неизвестных составим в соответствии с рис.1,6 систему уравнений:

$$\begin{align*}
P_p + P_s + P_c &= Q_s + Q_k + Q_c; \\
Q_s &= P_x + Q_{np}; \\
Q_c &= Q_{iz} + P_c; \\
\theta_n - \theta_x &= Q_k R_k; \\
\theta_s - \theta_x &= Q_s R_s; \\
\theta_c - \theta_x &= Q_c R_c; \\
\theta_n - \theta_x &= Q_{np} R_{np}; \\
\theta_n - \theta_c &= Q_{iz} R_{iz}.
\end{align*}$$

В результате совместного решения этих уравнений находим средние температуры отдельных частей статора, равные превышениям температур, если $\theta_x=0$.

Нами была разработана методика теплового расчета для закрытых асинхронных двигателей с короткозамкнутым ротором типа беличьей клетки без циркуляции внутреннего воздуха.

Предлагаемая методика позволяет проводить качественную оценку нагрева двигателей с выше указанными конструктивными особенностями. Для более точного отражения физической сути тепловых процессов в асинхронном двигателе в методике предусмотрен расчет нагрева элементов двигателей, для которых с достаточной точностью могут быть заданы исходные данные и определены зависимости для расчета коэффициентов теплоотдачи. При этом были приняты следующие допущения:

1) в поперечном сечении двигателей отсутствует перетекание тепла, что позволяет решать плоскую задачу в продольном сечении;
2) в поперечном сечении обмотки температуры отдельных проводников равны средней температуре в рассматриваемом сечении;
3) коэффициенты теплопроводности электротехнических материалов и воздуха считаются постоянными для рабочих температур частей двигателя;
4) тепловыми потоками через клинья пазов статора и вал пренебрегаем.

Тепловая эквивалентная схема замещения электродвигателей с короткозамкнутым ротором приведена на рис.2.

При тепловом расчете электродвигателей учитываются все греющие потери, генерируемые в двигателе. Для выбранной тепловой схемы замещения потери в обмотках статора и ротора распределены пропорционально длинам
Рис. 1. Тепловая схема замещения статора машины переменного тока.
а – при различных температурах воздуха у теплорассеивающих поверхности; б – при одинаковой температуре охлаждающего воздуха

Рис. 2. Тепловая схема электродвигателя с короткозамкнутым ротором
участков лобовых и пазовых частей. Короткозамкнутый ротор представлен в виде одного тела, в источник потерь включены потери в обмотке ротора и добавочные потери в роторе. Принято, что источники (греющие потери) сосредоточены в середине рассматриваемых элементов.

По тепловой схеме замещения была составлена система уравнений для расчета превышения температуры короткозамкнутых двигателей без циркуляции внутреннего воздуха. Поскольку для подобного расчета можно использовать как тепловые сопротивления, так и тепловые проводимости, то мы при составлении схемы и системы уравнений по ней имели дело с последними (\(\Lambda\) - тепловые проводимости, \(\theta\) - превышения температуры элементов машин, \(P\) – потери мощности).

Система уравнений для расчета превышения температуры короткозамкнутых двигателей без циркуляции внутреннего воздуха имеет вид:

\[
\begin{align*}
\theta_{\text{Cu}l1p} (\Lambda_{1pl1} + \Lambda_{1pl2} + \Lambda_{Cu} + \Lambda_{1pz}) - \theta_{\text{Cu}l1} (\Lambda_{1pl1} - \theta_{\text{Cu}l1} \Lambda_{1pl1}) - \theta_{\text{Cu}l2} (\Lambda_{1pl2} - \theta_{\text{Cu}l2} \Lambda_{1pl2}) - \theta_{k1j} (\Lambda_{1pz}) - \theta_{k1z} (\Lambda_{1pz}) &= P_{\text{Cu}l1p}; \\
\theta_{\text{Cu}l1} (\Lambda_{1pl1} + \Lambda_{1pl1}) - \theta_{\text{Cu}l2} (\Lambda_{1pl1} - \theta_{\text{Cu}l2} \Lambda_{1pl1}) - \theta_{\text{svl}1} (\Lambda_{1pl1} - \theta_{\text{svl}1} \Lambda_{1pl1}) &= P_{\text{Cu}l1}; \\
\theta_{k1j} (\Lambda_{Cu} + \Lambda_{js} + \Lambda_{ij}) - \theta_{\text{Cu}l1} (\Lambda_{Cu} + \theta_{s2} A_{js} - \theta_{k1z} A_{ij}) &= P_{j1}; \\
\theta_{k1z} (\Lambda_{1pz} + \Lambda_{1zl} + \Lambda_{1zg}) - \theta_{\text{Cu}l1} (\Lambda_{1pz} + \theta_{s2} A_{lz} - \theta_{k1j} A_{ij}) &= P_{z1}; \\
\theta_{2} (\Lambda_{1zl} + \Lambda_{1zl1} + \Lambda_{1zl2}) - \theta_{k1z} (\Lambda_{1zl} - \theta_{\text{wvl}1} A_{1zl} - \theta_{\text{wvl}3} A_{1zl2}) &= P_{z2} ; \\
\theta_{\text{svl}1} (\Lambda_{1zl1} + \Lambda_{1zl1} + \Lambda_{svl} + \Lambda_{wvl1}) - \theta_{\text{Cu}l1} (\Lambda_{1zl1} - \theta_{s2} A_{zl1} - \theta_{s1} A_{svl1} - \theta_{sl} A_{wvl1}) &= P_{svl1}; \\
\theta_{\text{svl}3} (\Lambda_{1zl1} + \Lambda_{1zl1} + \Lambda_{svl} + \Lambda_{wvl3}) - \theta_{\text{Cu}l1} (\Lambda_{1zl1} - \theta_{s2} A_{zl1} - \theta_{s3} A_{svl3} - \theta_{w2} A_{wvl3}) &= P_{svl3}; \\
\theta_{w1} (\Lambda_{wvl1} + \Lambda_{wvl1} + \Lambda_{wvl3}) - \theta_{\text{wvl}1} (\Lambda_{wvl1} - \theta_{w0} A_{wvl1} - \theta_{s1} A_{wvl1}) &= P_{wvl1} ; \\
\theta_{w2} (\Lambda_{wvl2} + \Lambda_{wvl2} + \Lambda_{wvl3}) - \theta_{\text{wvl}2} (\Lambda_{wvl2} - \theta_{w1} A_{wvl2} - \theta_{s3} A_{wvl3}) &= P_{wvl2} ; \\
\theta_{s1} (\Lambda_{svl1} + \Lambda_{svl1} + \Lambda_{svl} + \Lambda_{wsvl1}) - \theta_{\text{wsvl1}} (\Lambda_{svl1} - \theta_{s2} A_{svl1} - \theta_{w0} A_{wsvl1} - \theta_{sl} A_{svl1}) &= 0; \\
\theta_{s2} (\Lambda_{svl3} + \Lambda_{svl3} + \Lambda_{svl} + \Lambda_{wsvl3}) - \theta_{\text{wsvl3}} (\Lambda_{svl3} - \theta_{s2} A_{svl3} - \theta_{w1} A_{wsvl3} - \theta_{w2} A_{wsvl3}) &= 0; \\
\theta_{w0} &= (\Lambda_{wvl1} - \theta_{w0}) \frac{A_{wvl1} + P_{wvl1}}{2 A_{wvl1}} ; \\
\theta_{w1} &= (\Lambda_{wvl1} - \theta_{w1}) \frac{A_{wvl1} + (\Lambda_{wvl1} - \theta_{w0})}{2 A_{wvl1}} ; \\
\theta_{w2} &= (\Lambda_{wvl2} - \theta_{w2}) \frac{A_{wvl2} + (\theta_{s2} - \theta_{w0})}{2 A_{wvl2}} ; \\
\theta_{w3} &= (\Lambda_{wvl3} - \theta_{w3}) \frac{A_{wvl3} + (\theta_{s3} - \theta_{w0})}{2 A_{wvl3}} ,
\end{align*}
\]

где \(\theta_{\text{Cu}l1p}, \theta_{\text{Cu}l1}, \theta_{\text{Cu}l2}, \theta_{k1j}, \theta_{k1z}, \theta_{wvl1}, \theta_{wsvl3}, \theta_{s2}, \theta_{s3}, \theta_{s1}, \theta_{w1}, \theta_{w0}, \theta_{w1}, \theta_{w2}, \theta_{w3}\) - превышение температуры соответственно в пазовой части обмотки статора; в лобовой части обмотки статора со стороны наружного вентилятора; в лобовой части обмотки статора со стороны привода; в сердечнике статора; в зубцах статора; внутреннего воздуха со стороны наружного вентилятора; внутреннего воздуха со стороны привода; участка станины, расположенного над пакетом статора, ротора; концевых участков станины со стороны наружного...
вентилятора; щита, расположенного со стороны наружного вентилятора; концевых участков станины со стороны привода; щита, расположенного со стороны привода; наружного охлаждающего воздуха для двигателей габарита 56-350 за исключением двигателей с форсированным охлаждением ротора у подшипникового щита со стороны наружного вентилятора; наружного охлаждающего воздуха для двигателей габарита 56-350 за исключением двигателей с форсированным охлаждением ротора в концевой части станины со стороны наружного вентилятора; наружного охлаждающего воздуха для двигателей габарита 56-350 за исключением двигателей с форсированным охлаждением ротора над пакетом статора; наружного охлаждающего воздуха для двигателей габарита 56-350 за исключением двигателей с форсированным охлаждением ротора в концевой части станины со стороны привода;

\[
\lambda_{p1l1}, \lambda_{p1l2}, \lambda_{Cu1j1}, \lambda_{p1e}, \lambda_{11l1}, \lambda_{12l1}, \lambda_{12l2}, \lambda_{21l1}, \lambda_{12l1}, \lambda_{22l1}, \lambda_{w1}, \lambda_{w11}, \lambda_{w12}, \lambda_{w2}, \lambda_{w3}, \lambda_{1w1}, \lambda_{1w2}, \lambda_{1w3}, \lambda_{2w1}, \lambda_{2w2}, \lambda_{2w3}, \lambda_{3w1}, \lambda_{3w2}, \lambda_{3w3}, \lambda_{1sn1}, \lambda_{1sn2}, \lambda_{1sn3}, \lambda_{2sn1}, \lambda_{2sn2}, \lambda_{2sn3}, \lambda_{3sn1}, \lambda_{3sn2}, \lambda_{3sn3}, \lambda_{1n1}, \lambda_{1n2}, \lambda_{1n3}, \lambda_{2n1}, \lambda_{2n2}, \lambda_{2n3}, \lambda_{3n1}, \lambda_{3n2}, \lambda_{3n3}, - \\
\text{проводимость соответственно между пазовой и лобовой частями обмотки статора со стороны наружного вентилятора; между пазовой и лобовой частями обмотки статора со стороны привода; между обмоткой и спинкой статора; от лобовых частей обмотки к внутреннему воздуху для двигателей габарита 56-355 без циркуляции внутреннего воздуха со стороны наружного вентилятора; для двигателей с гофрированной станиной – со стороны внутреннего; от лобовых частей обмотки статора к внутреннему воздуху для двигателей габарита 56-355 без циркуляции внутреннего воздуха со стороны привода; для двигателей с гофрированной станиной – со стороны, противоположной внутреннему вентилятору; спинки пакета статора к станине; между зубцами и спинкой статора; между ротором и зубцами статора; от лобовых частей обмотки ротора к внутреннему воздуху со стороны наружного вентилятора; от лобовых частей обмотки ротора к внутреннему воздуху со стороны привода; от внутреннего воздуха к концевой части станины со стороны наружного вентилятора, для двигателей с гофрированной станиной – со стороны внутреннего; от внутреннего воздуха к подшипниковым щитам со стороны наружного вентилятора; от внутреннего воздуха к концевой части станины со стороны привода, для двигателей с гофрированной станиной – со стороны, противоположной внутреннему вентилятору; от внутреннего воздуха к подшипниковым щитам со стороны привода; от подшипникового щита к наружному воздуху со стороны наружного вентилятора; соединения «щит-станина» со стороны наружного вентилятора; от подшипникового щита к наружному воздуху со стороны привода; соединения «щит-станина» со стороны привода; между элементами станины; от станины к наружному воздуху на концевом участке со стороны наружного вентилятора; между элементами станины; от станины к наружному воздуху над пакетом статора; от станины к наружному воздуху на концевом участке со стороны привода; между элементами наружного воздуха, обдувающего станину с форсированным охлаждением ротора; между элементами наружного воздуха, обдувающего станину с форсированным охлаждением ротора; между элементами наружного
воздуха, обдувающего станину с форсированным охлаждением ротора; P_{CuP1}, P_{CuP2}, P_{l1}, P_{l2}, P_{z2}, P_{mw1}, P_{mw2}, P_{t1}, P_{t2} - потери соответственно в пазовой части обмотки статора; в лобовых частях обмотки статора со стороны наружного вентилятора; для двигателей с гофрированной станиной – со стороны внутреннего; в лобовых частях обмотки статора со стороны привода, для двигателей с гофрированной станиной – со стороны, противоположной внутреннему вентилятору; в спинке статора; в зубцах статора; в короткозамкнутом роторе; внутренние механические потери со стороны внутреннего вентилятора (или щеточного узла); внутренние механические потери со стороны, противоположной внутреннему вентилятору (или щеточному узлу); на трение в подшипниках со стороны наружного вентилятора; на трение в подшипниках со стороны привода.

Полученную систему уравнений можно решить с помощью компьютерных программ, например программы «Математика 5.0». Электрические схемы удобно строить в программе ELECTRONICS WORKBENCH [4].

Заключение и выводы.
На основе изложенного можем сделать выводы:
1) применение законов Кирхгофа в тепловых расчетах электрических машин, основанных на методе тепловых схем замещения, позволяет определить средние превышения температуры элементов данных машин;
2) максимальные превышения температуры в обмотках асинхронных двигателей определяются путем решения уравнения теплопроводности с использованием результатов решения эквивалентных тепловых схем замещения;
3) результаты теплового расчета позволяют использовать электрические машины в различных отраслях производства при различных режимах работы.

Литература:

References:
2. Gurin Ya.S., Kuznetsov B.I. Proektirovanie seriy elektricheskih mashin. – M.: Energiya,
Abstract. The paper considers an example of thermal calculation based on the method of thermal replacement schemes. As a result of its use, the average temperature rises of individual elements of electrical machines are determined.

Key words: thermal resistance, electrical circuit, power loss, electrical loss, mechanical loss, magnetic loss.
PRINCIPLES OF ARCHITECTURE DEVELOPMENT OF A UNIVERSAL DEVICE FOR BIOPOTENTIAL MEASUREMENT

ПРИНЦИПЫ ПОСТРОЕНИЯ АРХИТЕКТУРЫ УНИВЕРСАЛЬНОГО УСТРОЙСТВА РЕГИСТРАЦИИ БИОПОТЕНЦИАЛОВ ОРГАНИЗМА

Kozhevnikov A.V. / Кожевников А.В.
bachelor / студент-бакалавр
Saint-Petersburg State University of Aerospace Instrumentation,
Saint-Petersburg, Bolshaya Morskaia str., 67, 190000
Санкт-Петербургский государственный университет аэрокосмического приборостроения,
Санкт-Петербург, ул. Большая Морская, д. 67, лит. А, 190000

Аннотация. В статье рассматриваются методы и схемы реализации исследований биопотенциалов (ЭКГ, ЭМГ, ЭЭГ), параметры сигналов. Описаны основные особенности и недостатки классических устройств узкой специализации. Предлагаемые в статье принципы построения универсального устройства регистрации биопотенциалов позволяют создать устройство без перечисленных недостатков классических устройств, основываясь на современных технических средствах и сочета в себе как аппаратные, так и программные решения. Важным отличием предложенной методики является переход от аналоговых цепей обработки сигнала к использованию интегральных микросхем с последующей цифровой обработкой средствами устройства или ПК оператора.

Ключевые слова: исследования биопотенциалов, ЭКГ, ЭМГ, ЭЭГ, универсальное устройство

Вступление

Развитие технологий цифровой техники и интегральных решений позволяет пересмотреть архитектуру современных медицинских диагностических устройств. Простые исследования сердца и мышечной активности приобретают все большую популярность в спортивной и пользовательской среде. Появляется необходимость в создании компактных, помехоустойчивых и даже универсальных решений.

Задачей этой статьи является пересмотр классических устройств и разработка принципов построения универсальных устройств преимущественно за счет цифровой обработки сигнала и с использованием прецизионных многоканальных АЦП высокого разрешения.

1. Характеристики измеряемых сигналов
 Электрокардиография (ЭКГ): 150 Гц, 5 мВ.
 Электроэнцефалография (ЭЭГ): 40 Гц (до 170 Гц альфа-волны), 200 мкВ.
 Электромиография (ЭМГ): 1000 Гц (до 10 кГц), 1 мВ [1; 2].

2. Системы отведений
 Основной задачей при изучении систем отведений является их систематизация и определение технических требований к коммутатору регистрирующего устройства для дальнейшей разработки методики регистрации, реализованной в универсальном устройстве.

2.1. Электрокардиография (ЭКГ)
 Наиболее распространена ЭКГ в 12 отведениях, включающая помимо трех стандартных (рис. 1б), три усиленных (рис. 1а) и шесть грудных отведений.
(рис. 1 в), требующих для формирования суммирующую цепь.

Рис. 1. Системы отведений ЭКГ: а) усиленные отведения; б) стандартные отведения; в) грудные отведения; г) ВКГ по Франку; д) динамическая ЭКГ; е) ВКГ по Акулиничему; ж) ЭКГ по Нэбу

Изображенные на рис. 1д и рис. 1ж типы ЭКГ, как правило, используются в спортивной медицине и для продолжительного мониторирования поведения сердца (рис. 2) под влиянием разных нагрузок. Они, как и ВКГ (векторокардиография) по Акулиничему (рис. 1е) состоят исключительно из биполярных отведений, и только ВКГ по Франку (рис. 1г) требует суммирующей цепи – самой сложной среди всех описанных методов.

Рис. 2. Системы отведений при Холтеровском мониторировании: а) двухканальный режим; б) трехканальный режим; в) альтернативный трехканальный режим
2.2. Электроэнцефалография (ЭЭГ)

Отведения для ЭЭГ также делятся на биполярные и униполярные с некоторыми вариантами индифферентного электрода. При этом наложение электрода в любом случае производится по системе 10/20 (рис. 3 а-в).

Индифферентным электродом в униполярных отведениях может выступать реальный электрод, установленный на мочке уха или переносице, но в реальности его потенциал не является нулевым. В таком случае в качестве индифферентного используют виртуальный, сформированный суммирующей цепью электрод (рис. 3 г). Недостатком такой схемы является взаимное влияние регистрируемых каналов друг на друга.

В биполярных отведениях все каналы независимы, и разность потенциалов регистрируется между двумя электродами, расположенными над активными участками мозга. Для установления вклада отдельного участка мозга в общую активность применяют метод отведения цепочкой (рис. 3 г). В этом случае для двух соседних каналов съема один электрод является общим. Частным случаем такого отведения цепочкой является триангуляция (рис. 3 д).

Рис. 3. Отведения в ЭЭГ: а-в) расположения электродов по системе «10-20»; г) электрическая схема ЭЭГ с нулевым электродом; д) система отведений «цепочка»; е) система отведений «триангуляция»

2.3. Электромиография (ЭМГ)

По способу съема ЭМГ также используют униполярные и биполярные отведения. Электроды устанавливаются вдоль исследуемой мышцы или в области моторных нервных центров.

2.4. Электроокулограмма (ЭОГ), электоретинография (ЭРГ)

Электроокулограмма (ЭОГ) и электоретинография (ЭРГ) являются частным случаем миографии в исследовании глаз. В соответствии с наиболее распространенными методиками ЭОГ, предложенными Франсуа и Дебук (рис. 4)
а) или Лурье (рис. 4 б), сигналы снимаются в биполярных отведениях.

То же касается и ЭРГ, где в качестве рабочего используют электрод, вмонтированный в контактную линзу, а в качестве индифферентного - электрод, подключенный к мочке уха или наложенный на лоб.

![Рис. 4. Отведения в ЭОГ, ЭРГ: а) ЭОГ по Франсуа и Дебук; б) ЭОГ по Лурье; в) система отведений для ЭРГ.](image)

2.5. Выводы

Таким образом, несмотря на преобладание биполярных систем отведений, в некоторых исследованиях требуется наличие суммирующей цепи для формирования индифферентных электродов (в некоторых методах с разными весовыми коэффициентами).

Требования к универсальности системы накладывают ограничение на реализацию системы коммутации классическим аппаратным способом в виду её конечной громоздкости, сложности и дороговизны.

3. Помехи

3.1. Источники помех

Источники помех можно классифицировать по природе возникновения следующим образом.

1) Помехи биологического характера, связанные с наличием непосредственного электрического контакта пациента с датчиком:
 - образование на переходах «кожа-электрод» напряжений поляризации, создающихся на входе УБП напряжения смещения, которые могут достигать ±300 мВ; такое напряжение может вызывать насыщение усилителя;
 - медленный (до 1 Гц) дрейф напряжения поляризации, возникающий вследствие протекания химических процессов в организме и его саморегуляции;
 - взаимное перемещение электрода вдоль кожи приводит к мгновенному изменению потенциала, т.е. к генерации помех. Это может происходить во время резких движений пациента или при отсоединении электрода;
 - нестабильность внутреннего сопротивления за счет изменения сопротивления переходов «кожа-электрод»; при этом приходится считаться с большими значениями межэлектродных сопротивлений, их разбалансированием в определенной системе отведений.

2) Помехи биологического характера, источником которых являются другие органы.

3) Помехи техногенного характера.

Помехи этого типа могут улавливаться как телом человека, так и электродом, электродным кабелем или даже самой микросхемой устройства, и
являются синфазными, потому что и человек, и устройство регистрации полностью находятся в их электрическом поле: сети 50 или 60 Гц (включая модуляцию частот и импульсы, приходящие из сети); газоразрядных ламп освещения или других приборов, работающих на собственных частотах; помехи на радиочастотах; импульсные помехи при воздействии на объект исследования терапевтических аппаратов.

В итоге, в отводимом с помощью контактных электродов сигнале вместе с полезной составляющей порядка 5 мВ и ниже присутствует инфразвуковая составляющая до 300 мВ и синоэпиодальная помеха до 10 В частотой 50 или 60 Гц (в зависимости от условий исследования).

3.2. Борьба с помехой

Борьба с помехой предполагает следующее.

1) Подавление синфазной помехи производится путем дифференциального съема полезного сигнала, конструктивно реализуемого входными цепями усилителей биопотенциалов [2; 3].

2) В классической схеме для удаления электродных потенциалов и их инфразвукового дрейфа (дрейф изолинии) используется ФВЧ (фильтр верхних частот), установленный либо в плече инструментального усилителя, либо между входным предусилителем и выходным усилителем с большим КУ (коэффициентом усиления) [2].

3) Аппаратный ФНЧ (фильтр нижних частот), ограничивающий высокочастотную составляющую спектра, ограничивающий спектр информативного сигнала точно заданными границами, выполняет также функцию антиалейзингового фильтра АЦП.

4) Аппаратные и цифровые режекторные фильтры, удаляющие мышечный тремор и оставшиеся сетевые наводки 50 Гц.

5) Экранирование электродных кабелей и микросхем аппаратуры позволяет исключить наводки от перемещения кабеля и радиочастотных помех.

4. Особенности классических устройств регистрации биопотенциалов

К особенностям классических устройств регистрации биопотенциалов отнесём:

- высокий коэффициент усиления, предшествующий АЦП с низким разрешением;

- наличие аппаратных фильтров, в особенности ФВЧ с высокой постоянной времени (более 3.2 с). Без ФВЧ невозможно обеспечить необходимый уровень усиления;

- искажения сигнала на частотах, близких к частотам среза фильтров, особенно заметные на примере Р-зубца в ЭКГ при использовании антитреморного фильтра [2];

- формирование отведений с помощью аналоговых мультиплексоров или матричных коммутаторов или возможность исследования только по одной методике;

- с блока аналоговой обработки выходят уже обработанный подготовленный сигнал, что не требует постобработки или дорогостоящих цифровых микросхем;
архитектура описанной системы ограничивает увеличение числа каналов регистрации.

Вышеперечисленные особенности требуют использования прецизионных пассивных компонентов входных цепей и большого количества усилителей, дорогостоящих коммутаторов. В функциональном плане применение устройств сильно ограничено размерами самих устройств и помехами, вызванными механическим взаимодействием объекта исследования со средой.

5. Сущность предлагаемого метода

Предлагаемая автором архитектура устройства регистрации биopotенциалов является определенным набором решений и методов работы, в совокупности позволяющих реализовать компактную и простую универсальную систему, которая обладает потенциалом к расширению и способна работать в условиях, когда объект исследования испытывает физические нагрузки.

Предлагаемая автором система базируется на следующих принципах:
1) использование АЦП с высоким разрешением (20 бит и более) без предусливания или с КУ менее 10);
2) АЦП с параллельной выборкой;
3) отсутствие аппаратных фильтров (входная цепь - только антиалипайзинговый фильтр);
4) использование цифровой фильтрации;
5) использование цифровой обработки для организации системы подавления синфазной помехи по схеме Driven-leg: формирование напряжений или токов драйвера правой ноги с помощью ЦАП;
6) система отведений:
 - цифровое вычисление общепринятых систем отведений вместо аппаратной коммутации;
 - измерения производятся по схеме с униполярными отведениями: общим является либо специально введенный дополнительный «нулевой» электрод, либо электрод, сформированный с помощью суммирующей цепи. Это позволяет значительно подавить синфазную помеху, благодаря чему можно будет увеличить КУ предусилителей в пределах, которые позволят наибольшую оставившуюся помеху - электродный потенциал. В результате математических вычислений измеренные значения будут приведены к общепринятым отведениям в соответствии с выбранным методом исследования.

Рассмотрим достоинства предложенной схемы.
1. Благодаря электронным образом формируемой системе отведений, нет необходимости в переключателях, гибких суммирующих цепях.
2. Цифровая фильтрация и широкий динамический диапазон измеряемых напряжений АЦП позволяют настроиться на сигнал с любой характеристикой без вмешательства в конструкцию.

Оба вышеперечисленных преимуществ позволяют производить любой тип исследования биopotенциалов с помощью одного устройства.
3. Исключение из конструкции аппаратных фильтров, помимо упрощения и удешевления схемы, дает следующие преимущества:
- возможность формирования любой полосы частот полезного сигнала;
- возможность одновременного снятия нескольких сигналов, лежащих в разных полосах частот, по каждому из каналов. В случае с ЭКГ СВР, например, разделение НЧ и ВЧ составляющих с соответствующей обработкой может проходить программно. Или в случае, когда необходимо обнаружить импульсы кардиостимулятора/дефибриллятора, лежащие в диапазоне частот выше 1 кГц (при способности АЦП обеспечить необходимую частоту дискретизации);
- отсутствие фазовых и амплитудных искажений снятого полезного сигнала;
- цифровые фильтры позволяют получить лучшую характеристику по сравнению с аппаратными фильтрами;
- отсутствие фазовых и амплитудных искажений снятого полезного сигнала.

Так как изначально сигнал регистрируется со всеми помехами и напряжениями смещения, по их величинам можно получить дополнительную информацию о состоянии контакта электродов или активности человека.

Система, построенная на предложенных принципах, обладает высокой помехозащищенностью в условиях, когда испытуемый совершает активные движения, например, во время занятий спортом. Помехи, вызываемые движением электродных кабелей и временная потеря контакта электрода в классической схеме способны вызвать переходные процессы на ФВЧ: восстановление нормальной работы прибора может занять до 10 с, чего не произойдет при отсутствии фильтров и емкостей во входных цепях.

4. Увеличивается коэффициент подавления синфазной помехи, снижающийся для системы до 40-60 дБ по сравнению со 100-120 дБ используемых операционных и инструментальных усилителей, в связи с погрешностью номиналов и количеством пассивных компонентов входных цепей.

5. АЦП параллельной выборки позволяет исключить ошибки измерений, возникающие из-за временного смещения измерений каждого последующего канала относительно предыдущего при последовательной регистрации каналов. Это особенно важно при работе с небольшими частотами дискретизации.

6. По сравнению с дешевым АЦП последовательной выборки, позволяющим коммутировать необходимые биполярные отведения, АЦП параллельной выборки обладают большей максимальной частотой дискретизации и значительно меньшим внутренним шумом на тех же частотах (для сигма-дельта архитектуры).

Наличие нескольких высокоскоростных каналов предоставляет потенциал для простого расширения числа каналов в низкоскоростных приложениях преобразованием архитектуры в последовательно-параллельную.

7. Использование ЦАП в системе подавления помех позволяет максимально эффективно настроить напряжение смещения на схеме RLD по сравнению с обычной схемой, усредняющей и инвертирующей смещения. Вместе с тем, фильтры и конденсаторы вносят задержку, которая уменьшает эффективность режекции помех. Скорость работы микроконтроллера или
ПЛИСа позволяет реализовать схему с гораздо меньшей задержкой.

Заключение

В ходе работы выявлен ряд обязательных технических требований к современной универсальной системе регистрации биопотенциалов.

А именно: использование многоканальных АЦП параллельной выборки высокого разрешения с минимальным усилением сигнала (КУ менее 10), переход от аналоговой обработки к цифровой фильтрации и цифровое формирование отведений вместо использования коммутаторов и суммирующих цепей. Описанные принципы позволяют значительно расширить функционал устройств, увеличить их помехоустойчивость и упростить производство. Это позволит создавать компактные профессиональные устройства для применения их как в клинической практике, так и в спорте.

Литература

3. Узлы и элементы медицинской техники: учеб. пособие / Н. А. Кореневский, Е. П. Попечителев; Курск. гос. техн. ун-т. Курск, 2009. 426 с.

References:

Abstract.

The article reviews the methods and schemes for the implementation of studies of biopotentials (ECG, EMG, EEG), the parameters of signals to determine the technical requirements for devices. The main features and disadvantages of classic devices of narrow specialization are described in order to determine the direction of improvement and correct their shortcomings. The principles proposed in the article for constructing a universal device for registering biopotentials make it possible to create a device without the listed drawbacks of classical devices, based on modern technical means and combining both hardware and software solutions. An important distinction of the proposed method is the transition from analog signal processing circuits to the use of integrated circuits with subsequent digital processing by means of the device or PC.

Key words: biopotential measurement, ECG, EEG, EMG, ADC, universal device architecture
УДК 621

DEVICE FOR THE ELECTROCHEMICAL ACTIVATION OF WATER

УСТРОЙСТВО ДЛЯ ЭЛЕКТРОХИМИЧЕСКОЙ АКТИВАЦИИ ВОДЫ

Kyianovskyi A.M. / Киюновский А.М.

C.ch.s., as.prof. / к.х.н., доц.

Kherson State Agrarian University,

Kherson, Stretenskaya 23, 73006

Херсонский государственный аграрный университет,

Херсон, ул. Стретенская 23, 73006

Аннотация. Электрохимическая активация воды позволяет без применения химических реагентов направлено изменять в широких пределах кислотно-основные, окислительно-восстановительные, каталитические свойства воды и разбавленных водных растворов, использовать их для создания эффективных и экологически безопасных технологий в самых различных сферах человеческой деятельности.

Предложен аппарат, позволяющий получить электрохимически активированную воду с заданными параметрами, предназначенный для использования, в первую очередь, в сельском хозяйстве.

Ключевые слова: электрохимическая активация, католит, анолит, активатор.

Вступление. Технологии многих промышленных и, в особенности, сельскохозяйственных производств основаны преимущественно на применении воды.

При прохождении постоянного электрического тока в воде (водных растворах) происходит электрохимическое и электрофизическое воздействие на ионы и молекулы в области пространственного заряда у поверхности электрода (анода или катода).

В результате вода переходит в метастабильное состояние, проявляя аномальную реакционную способность в различных физико-химических процессах.

Для активированных растворов характерны высокие окислительная, восстановительная и каталитическая активности наряду с непропорционально малым содержанием действующих веществ [1-4].

Это коренным образом отмечает активированные растворы от соответствующих традиционных растворов химических элементов.

Потому использование электрохимически активированной воды и водных растворов, находящихся в состоянии наибольшей физико-химической активации, позволяет значительно упростить и удешевить традиционные технологии при повышении качества конечного продукта.

Необходимо отметить, что, как правило, продукты реакций, полученные с применением активированных растворов, не изменяют своих свойств и состояния во времени, т.е. не подвержены процессам релаксации.

Основной текст. В процессе электролиза воды и водных растворов при потенциале, превышающем потенциал разложения воды (1,23 В), на катоде и аноде образуются валентно-ненасыщенные частицы (радикалы), обладающие
повышенной реакционной способностью.

Кроме того, сам по себе электрический ток ведет себя как сильнейший окислитель (или восстановитель) [1].

В двухкамерном электролизере с разделительной нейтральной диафрагмой, вода у катода (католит) приобретает щелочную реакцию, pH возрастает, её окислительно-восстановительный потенциал ОВП (или редокс-потенциал Eh) снижается, уменьшается поверхностное натяжение, снижается количество растворенного кислорода и азота, уменьшается электропроводность. У катода восстанавливается катионы H⁺ и выделяется газообразный водород H₂.

При анодной электрохимической обработке в анолите увеличивается кислотность, уменьшается pH, возрастает ОВП (Eh), увеличивается электропроводность, возрастает количество растворенного кислорода и хлора. У поверхности анода происходит окисление OH⁻ с выделением кислорода О₂ [2].

Католит обладает антиоксидантными и иммуностимулирующими свойствами, которые стимулируют процессы выработки энергии (АТФ), регулируют углеводный и липидный обмен.

Анолит уменьшает патогенную флору, оставляя невредимой полезную флору. Оказалось, что анолит так действует только при определенных значениях ОВП. Это свойство дает огромное преимущество перед антибиотиками, поскольку те уничтожают не только патогенную, но и полезную бактериальную среду. Обладает антисептическими, антиаллергическими, противовоспалительными свойствами, действует при непосредственном контакте [1, 3-6].

Анолит имеет высокий редокс-потенциал, до + 1200 мВ, pH≤6. Для католита pH≥9, Eh от – 330 до 850 мВ.

Поэтому большой интерес представляют исследования и практическое использование электрохимически активированной воды в сельском хозяйстве.

С её помощью можно эффективно влиять на биологические процессы в живых организмах. В сельскохозяйственном производстве, в частности, в фермерских хозяйствах проводить [3-7]:
- обеззараживание и увеличение времени сохранения растительного и животного сырья – салатов, зелени, ягод, плодов, мяса, рыбы и др.;
- обеззараживание питьевой, промышленной, сточных вод;
- обработку семян, рассады, растений в теплицах для борьбы с микроорганизмами и др.;
- повышение эффективности жидких минеральных комплексных удобрений и др.;
- лечение и профилактика раневых поверхностей, вымени коров и др.

Однако широкое использование электрохимической активации затруднено, поскольку промышленность выпускает бытовые активаторы с малым объемом электролита (около 1л) и в них отсутствует возможность установления необходимых параметров анолита и католита (величины pH и Eh).

Активаторы, использованные в промышленности, рассчитаны на слишком большие объемы электролита.
Рассматриваемый прибор удачно заполняет нишу между бытовыми и большими промышленными установками [8, 9].

Устройство предназначено для применения электрохимически активированной воды (водных растворов) в разнообразных технологиях, используемых, в основном, в сельскохозяйственном производстве.

Двухкамерная ванна электролизера рассчитана на получение до 100 л католита и анолита с заданными значениями pH и ОВП (соотношение объемов католита и анолита можно изменять).

Такой объем ванны позволяет реализовать возможности метода, например, в фермерских хозяйствах.

Электрохимическая активация происходит тем интенсивнее, чем больше плотность тока и поляризация электрода, чем больше молекул раствора вступают в контакт с поверхностью электрода. Способствует также большая концентрация долгоживущих гетерофазных структур, например, микроскопических газовых пузырьков и полостей для заряженных сверхактивных частиц, созданных в метастабильном растворе [1-3].

Эти условия определяют выбор площади электродов и тока активации.

Электрическая принципиальная схема блока управления процессом электрохимической активации показана на рис.1.

Рис. 1. Схема электрическая принципиальная электрохимического активатора воды

Переменный ток напряжением 220 В через автоматы-предохранители F1 и F2 подается на регулятор тока и на выпрямитель, выполненный на диодах VD7 – VD10, а затем на электроды, размещены в анодной и катодной частях камеры, разделенной мембраной.

Ток активации с помощью регулятора, выполненного на симисторах, можно изменять от 0 до 20 А, что позволяет устанавливать ток, оптимальный для получения необходимых значений pH и Eh католита и анолита.

Фотографии блока управления приведены на рис.2.
Рис. 2. Блок управления процессом электрохимической активации воды

Ток активации измеряется амперметром PA1, напряжение сети и на электродах – электронным вольтметром PV1.

Для предупреждения образования «гречного газа» – смеси водорода и кислорода, выделяющихся в реакциях на электродах, в ванне электролизера установлены вентиляторы M1 и M2. На передней панели прибора расположены индикаторы состояния отдельных узлов активатора.

При конструировании ванны электролизера (рис.3) особое внимание уделено предотвращению опасных ситуаций, которые возможны при эксплуатации устройства.

Рис. 3. Ванна электролизера
Во избежание поражения электрическим током корпус ванны электролизера и все его детали выполнены из диэлектрических материалов. Мембрана, разделяющая катодную и анодную части камеры, выполнена из устойчивой к химическим воздействиям стеклоткани и закреплена на пластмассовом каркасе.

Электроды и все элементы их крепления изготовлены из пищевой нержавеющей стали.

На верхней крышке электролизера установлены вентиляторы и светодиоды, информирующие о подаче напряжения на электроды. На днище ванны расположены два вентиля для слива католита и анолита в отдельные сосуды.

Заключение и выводы.

Экспериментально подтверждена эффективность разработанной установки для электрохимической активации воды, предназначенной для использования, в первую очередь, в небольших сельскохозяйственных предприятиях.

Использование симисторов в регуляторе тока активации позволило значительно упростить электрическую схему, размеры и массу блока управления.

Ванна электролизера изготовлена из диэлектрических химически устойчивых материалов, предприняты меры по предотвращения поражения электрическим током.

Установка успешно прошла производственные испытания в одном из хозяйств Херсонской области.

Литература:
7. Шрамко Г.А. Совершенствование технологии некорневой подкормки озимой пшеницы с применением электрохимически активированной воды / Г.А. Шрамко, Э.А. Александрова, Г.В. Князева // Научный журнал Труды
Abstract. Electrochemical activation of water allows, without the use of chemical reagents, to change the acid-base, redox, catalytic properties of water and dilute aqueous solutions over a wide range, to use them to create effective and environmentally friendly technologies in various areas of human activity.

The proposed apparatus, allowing to obtain electrochemically activated water with specified parameters, intended for use, primarily in agriculture.

Key words: electrochemical activation, catholyte, anolyte, activator.
PORTABLE BLOOD PRESSURE MANOMETER
ПОРТАТИВНИЙ МАНОМЕТР АРТЕРІАЛЬНОГО ТИСКУ

Kashuba D.A. / Кашуба Д.А.
student / студент

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute ", Kiev, Peremoga Ave 37, 03056
Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», Київ, пр-т Перемоги 37, 03056

УДК 004.2

Анотація. На сьогоднішній день одними з найпоширеніших хвороб в сучасному суспільстві є хвороби, пов’язані з серцево-судинною системою. Одним з головних показників, що відображає загальний стан цієї системи є артеріальний тиск. В даній роботі розглянуто конструювання приладу для вимірювання показників систолічного та діастолічного тиску, їх подальше збереження та аналіз з можливим подальшим прогнозуванням даних.

Ключові слова: артеріальний тиск, моніторинг, серцево-судинна система, осцилометричний метод, аналіз даних, Python, Raspberry Pi, Arduino, архівація даних, аналіз.

Вступ.
Сьогодні поширенними є проблеми з серцево-судинною системою, і кожного року все більше людей страждають від відповідних захворювань. Причинаю можуть бути різноманітні чинники, такі як малорухливий спосіб життя, нездорове харчування та тощо. Саме тому важливим є моніторинг серцево-судинної системи, а також своєчасне попередження про можливі хвороби та їх лікування. Одним із основних показників стану серцево-судинної системи є артеріальний тиск. Для людини негативно впливає його завищене значення (гіпертонія) а також занижене значення (артеріальна гіпотензія). Тому моніторинг даної величини завжди актуальний, як для пацієнта з хворобами серця, так і для простого щоденного моніторингу, щоб на ранніх стадіях уникнути проблем з тиском. Саме тому, для того, щоб своєчасно виявити можливу хворобу, проаналізувати розвиток хвороби і для моніторингу ефективності лікування було прийнято рішення створити систему активного моніторингу артеріального тиску людини. До системи також висуваються вимоги повної або часткової автоматизації, а також простоти в використанні.

Основний текст
Проаналізувавши всі переваги і недоліки наявних систем було прийняте рішення спроектувати автоматичну портативну систему. Вимірювання артеріального тиску буде проводитись осцилометричним методом. Навіть при наявній невеликій похибці в порівнянні з методом Короткова, метод є досить поширенним в сучасних автоматичних тонометрах. Переваги методу: головною перевагою методу в порівнянні з методом Короткова є те, що дана методика абсолютно не залежить від слуху та зори людини, що проводить вимір, апарати з даною методикою вимірювання стійкі до сторонніх можливих шумів, проводять вимірювання навіть при слабких тонах Короткова, і навіть проводять точні вимірювання через тонку одежду. Ці тонометри прості в використанні.
інтуїтивно зрозуміли, та не потребують додаткової підготовки для їх використання [1]. На рисунку 1 зображена Функціональна схема приладу.

![Функціональна схема приладу](image)

Рис. 1. Функціональна схема приладу.

Керування процесом буде відбуватись з одноплатного комп’ютера Raspberry Pi, до якого буде під’єднаний за допомогою Wi-Fi модуля мікроконтролер (в нашому випадку Arduino). Мікроконтролер буде виконувати ряд основних функцій, такі як подача керуючих імпульсів на мотор для нагнітання повітря в систему, та на клапан для вивodu повітря з системи. Далі йде 4 елементи, які з’єднані між собою: манжета, клапан, мотор та датчик тиску. Ця система представляє собою основні компоненти для вимірювання тиску в манжеті, а також управління тиском в цій системі. Далі, щоб отримати данні, що нас цікавлять, а саме осцилляції тиску в манжеті, спричинені артерією, нам необхідно ці складові виділити. Щоб це зробити, необхідно спочатку підсилити сигнал, що надходить з датчика тиску за допомогою підсилювача сигналу. Далі сигнал поступає на смуговий фільтр, де відбувається фільтрація від зайвих шумів, і в подальшому подається на АЦП для збільшення точності вимірювань. Після обробки АЦП сигнал подається на мікроконтролер, який сам в подальшому робить обчислення, та надсилає данні на комп’ютер для подальшого їх збереження та аналізу. Реалізовуватись запис та аналіз буде завдяки мові програмування Python та за допомогою бібліотек для роботи з даними.

Механізм роботи приладу наступний: в манжету надходить повітря, і надходить до того часу, поки позначка тиску в манжеті не досягає 180 мм.рт.ст для того щоб тиск в манжеті був більший за систолічний тиск людини. Після того, як тиск досягне цієї позначки, компресор перестане накачувати повітря в манжету. Після цього повітря буде періодично випускатись за допомогою клапана шляхом відкривання його на 50 мс кожні 4 секунди. В той час як
повітря буде виходити з системи, кров буде пробиватись через манжету. Систолічним тиском буде вважатись той тиск, при якому будуть добре виділені осциляції крові в манжеті. Після певного часу, коли осциляції повністю зникнуть, буде отриманий діастолічний тиск. Таким чином ми отримуємо два показника: систолічний та діастолічний тиск, що в подальшому буде переданий мікроконтролеру, а потім кінцевому користувачу.

Для потреб системи було підібрано датчик тиску MPX2050GP з діапазоном робочого тиску від 0 до 50 кПа, та невеликою похибкою (0.8мВ/кПа), що цілком задовольняє наші вимоги [2]. Але оскільки діапазон вихідної напруги лише від 0 до 40 мВ, а найвище значення тиску в манжеті, яке ми будемо використовувати, 180 мм.рт.ст., що відповідає 19,2 мВ на виході з датчика, необхідно підсилюти цей сигнал. Саме тому були підібрані інші компоненти, такі як інструментальний диференційний підсилювач сигналу AD620, аналого-цифровий перетворювач ADS1115 для збільшення діапазону вимірювань, і, як наслідок, збільшення точності вимірювань, манжета, компресор KPM14A та клапан JQF1, які вирізняються своєю компактністю, малою кількістю необхідної напруги для їх роботи, а також низьким шумом. Ці компоненти цілком задовольняють вимоги до приладу. Далі дані будуть відправлятись на мікроконтролер Arduino Nano. Сигнал з АЦП буде оброблюватись мікроконтролером Arduino. Алгоритм роботи програмної частини комплексу зображений на рисунку 2.

Рис. 2. Алгоритм роботи програмної частини комплексу.

Управління компресором та клапаном буде реалізоване за допомогою двох цифрових виходів, при подачі великого сигналу (стан 1) компресор буде накачувати повітря, а клапан відповідно закриватись, при подачі низького
сигналу навпаки. Зчитування сигналу буде відбуватись з АЦП за допомогою аналогового входу.

Дані з мікроконтролеру будуть відправлятись на Raspberry Pi за допомогою Wi-Fi модуля ESP8266 [3]. На комп’ютері присутнє середовище програмування Python. Завдяки різноманітним бібліотекам для обробки даних будуть відбуватись збереження, обробка, а також аналіз вихідних даних, та їхнє зручне представлення в вигляді графіків на екрані комп’ютера.

Висновок
Були розглянуті найсучасніші методи для вимірювання артеріального тиску, підібрані основні компоненти майбутнього приладу, проаналізовані переваги та недоліки різних складових, та було підібране оптимальне рішення до поставленаї задачі вимірювання артеріального тиску.

В результаті роботи був спроектований портативний прилад для отримання показників артеріального тиску людини з подальшим їх зберіганням та аналізом. Завдяки отриманим даним з АЦП відбувається визначення значень систолічного та діастолічного тиску згідно методики вимірювання тиску осциллометричним методом. Мова програмування Python надає значно більші можливості завдяки можливості підключити бібліотеки, які найкраще підходять до проекту.

Дані будуть представлятись у вигляді графіків у зручному та зрозумілому вигляді, це допоможе проаналізувати динаміку змін тиску. Попередження, що буде з’являтись при високому тиску, завжди вчасно дасть знати про можливу хворобу для того, щоб вчасно її запобігти. Також дані будуть зберігатись в файлі, і лікар завжди зможе скористатись цими даними для моніторингу перебігу захворювання, або ефективність лікування.

Література:
1. Осциллометрический метод измерения давления // Медицинский портал «МЕД-Инфо» URL: http://med-info.ru/content/view/3501 (дата звернення: 19.05.2019).

References:
1. Medical portal "MED-Info", Ostsillometricheskiy metod izmereniya davleniya [Oscillometric pressure measurement method] in http://med-info.ru/content/view/3501 (date of the application 19.05.2019)
2. NXP Semiconductors | Automotive, Security, IoT. 50 kPa On-Chip Temperature

Abstract. Today, problems with the cardiovascular system are widespread, and every year more and more people suffer from the corresponding diseases. The reason may be such factors as the proliferation of sedentary lifestyles, as well as unhealthy diet. That is why it is important to monitor the cardiovascular system, as well as timely warning about possible illnesses and their treatment. One of the main indicators of the state of the cardiovascular system is arterial pressure. For a person, it is negatively affect by its overestimated value (hypertension) and underestimated value (arterial hypotension). Therefore, monitoring of this value will always be relevant, both for a patient with heart disease and for simple daily monitoring, in order to avoid pressure problems in the early stages.

Key words: blood pressure, monitoring, cardiovascular system, oscillometric method, data analysis, Python, Raspberry Pi, Arduino, data archiving, pressure gauge, device designing.
УДК 687.254.81

QUALITY OF CHILDREN'S LIGHTS
ЯКІСТЬ ДИТЯЧИХ КОЛГОТОК

Доманова О. В. / Domanova O. V.
k.т.н. / k.m.n.
ORCID: 0000-0003-2301-5005

Буць М. С. / Butts M. S.
master / магістр

Заголовки:

Анотація. В роботі розглянуто сучасний асортимент трикотажних дитячих колготок вітчизняного і закордонного виробництва та зазначено, що споживачі віддають перевагу виробам, що мають високу якість. Дослідження 10 дитячих колготок за органолептичними показниками показали, що тільки зразок китайського виробництва має значні відхиленні лінійних розмірів та за виявленими дефектами відноситься до браку.

Ключові слова: дитячі колготки, якість, органолептичні показники, сорт.

Вступ. Проблема якості непродовольчих товарів у сучасних умовах України стоїть дуже гостро. На ринку з’являється чимало фальсифікованих, неякісних, а інколи й небезпечних для здоров’я людини товарів. Дитячі колготки – не виняток. Вони є невіддільною та незамінною частиною одягу. Сьогодні внутрішній ринок України перенасичений відповідно імпортною продукцією, переважно китайського та турецького виробництва.

В умовах, що склалися, названа гостра потреба в повній і достовірній інформації про якість дитячих колготок, бо дуже часто виробники не дотримуються вимог НД стосовно сировини та якості готового товару.

Дитячі колготки повинні виготовлятися із натуральних волокон, бути екологічно чистими, безпечними, при використанні не шкодити здоров’ю дитини, повинні мати високі показники якості.

Сьогодні виробники даної продукції використовують всі можливі волокна та їх суміші, новітні технології, не забуваючи про сучасні напрямки моди [1, 2]. На підставі цього було вирішено провести дослідження якості дитячих колготок від різних виробників.

Огляд літератури. Однією з умов визначення якості дитячих колготок є проведення органолептичних досліджень, які дають можливість за допомогою органів чуття визначити відповідність товару естетичним та ергономічним вимогам.

Трикотажні вироби по якості поділяють на 1-й та 2-й сорти. Визначення сорту колготок проводять шляхом огляду лицьової сторони виробів на столах з гладкою поверхнею, світлого тону в розпрямленому виді без натягування. При цьому визначають уяву на наявність та розмір дефектів, а також на їх місце розташування.

Дефекти, які розташовані на закритих частинах виробу не враховуються. У
колготках закритими частинами вважаються виворітна сторона, нижня частина сліду, п'ята, мисок, верхня частина пагомілки. Крім того, на колготках повинні бути відсутні різого родю пошкодження петельної структури, а також дефекти, що перевищують допуски НД за винятком дефектів, які зникають при надяганні їх на ногу – деформація борту, заломи, складки, що утворюються при пришитті до борту еластичної стрічки, хвилясть швів, перекіс петельної структури, неспівпадання сторон п’ятки, миска тощо.

Серед дефектів колготок, які різко виражені, не допускаються такі, як:
- стовщення і стоншення ділянки від нерівності пряжі, нитки;
- поперечна смугастість від нерівності нитки, пряжі, поздовжні смуги, деформація петель;
- порушення рапорту візерунку (за переплетенням та кольором).

У колготках також не допускається штопка нитками, що не відповідають за видом і кольором основної нитки.

У приміщеннях, де проводять контроль якості, повинно бути природне або люмінесцентне освітлення. Не допускається перевірка при недостатньому освітленні, а також при освітлені прямыми сонячними променями.

Вироби, підготовлені до контролю якості, повинні акліматизуватися, тобто витримуватися в приміщенні 48 годин [3].

Результати органолептичних досліджень, визначення сорту колготок за кількістю допустимих дефектів наведені в табл. 1.

Проаналізувавши дані таблиці, можна зробити висновок, що досліджувані зразки дитячих колготок, крім зразка 4 китайського виробництва (брак), відносяться до 1-го сорту, так як відповідають вимогам ГОСТ 16825-2002 «Ізделия чулочно-носочные, вырабатываемые на круглочулочных автоматах. Технические требования. Определение сортности».

Також при проведенні органолептичних досліджень необхідно звертати увагу на відповідність колготок вимогам НД відносно розмірів та відхилень від них.

Під час перевірки якості колготок відповідно до лінійних вимірювань необхідно встановити правильність підбірания виробів в пару накладанням одне на інше, з’єднуючи точки п’яток, після чого перевірити довжину сліду, п’яток та загальну довжину виробу в парі [3].

Результати проведення лінійних вимірів дитячих колготок наведені в табл. 2.

За даними таблиці можна зробити висновок, що 8 із 10 зразків дитячих колготок мають відхилення лінійних розмірів в межах норми. Колготки виробництва Маркет-Юніон ЛТД (Китай) мають значні відхилення, що не відповідає нормам ГОСТ 8541. Дитячі колготки (Туреччина), які не мали маркування, за лінійними характеристиками відносяться до розміру: 62-68, 40, 8-10.
Таблиця 1

<table>
<thead>
<tr>
<th>№ з/п</th>
<th>Найменування зразка</th>
<th>Дослід</th>
<th>ГОСТ 16825-2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>«Дюна-baby» ТОВ «Дюна-Веста» Україна, м.Червоноград, Львівська обл.</td>
<td>дефектів не виявлено</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>«Легка хода» АТЗТ «Україна» Україна, м. Житомир</td>
<td>затяжки елементарних ниток, не залишаючи помітних слідів</td>
<td>не враховується</td>
</tr>
<tr>
<td>3.</td>
<td>«Conte-kids» СТОВ «Конте Спа», Білорусь, м. Гродно</td>
<td>дефектів не виявлено</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>Маркет- Юніон ЛТД, Китай</td>
<td>дірка від обриву ниток</td>
<td>не допускається</td>
</tr>
<tr>
<td>5.</td>
<td>Туреччина</td>
<td>затяжки елементарних ниток, не залишаючи помітних слідів</td>
<td>не враховується</td>
</tr>
<tr>
<td>6.</td>
<td>«Master» Україна, м. Харків</td>
<td>затяжки елементарних ниток, не залишаючи помітних слідів</td>
<td>не враховується</td>
</tr>
<tr>
<td>7.</td>
<td>«Sunny Jet», США</td>
<td>дефектів не виявлено</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>«Bony», Туреччина</td>
<td>затяжки елементарних ниток, не залишаючи помітних слідів</td>
<td>не враховується</td>
</tr>
<tr>
<td>9.</td>
<td>«Ewers», Німеччина</td>
<td>затяжки елементарних ниток, не залишаючи помітних слідів</td>
<td>не враховується</td>
</tr>
<tr>
<td>10.</td>
<td>«Maximo», Німеччина</td>
<td>дефектів не виявлено</td>
<td>-</td>
</tr>
</tbody>
</table>

Складено автором за результатами власних досліджень

Таблиця 2

<table>
<thead>
<tr>
<th>Зразки</th>
<th>Довжина ніжки, см</th>
<th>Довжина торсу, см</th>
<th>Довжина сліду, см</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вимоги ДСТУ 2056-92 для розміру: 86, 52, 14</td>
<td>32±2</td>
<td>22±2</td>
<td>14±2</td>
</tr>
<tr>
<td>«Дюна-baby» ТОВ «Дюна-Веста» Україна, м. Червоноград, Львівська обл.</td>
<td>34</td>
<td>23,5</td>
<td>14</td>
</tr>
<tr>
<td>«Легка хода» АТЗТ «Україна» Україна, м. Житомир</td>
<td>33</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>«Conte-kids» СТОВ «Конте Спа», Білорусь, м. Гродно</td>
<td>33,5</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>Маркет- Юніон ЛТД, Китай</td>
<td>29</td>
<td>18,5</td>
<td>13,5</td>
</tr>
<tr>
<td>Туреччина</td>
<td>20</td>
<td>19</td>
<td>10,5</td>
</tr>
<tr>
<td>«Master» Україна, м. Харків</td>
<td>31</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>«Sunny Jet», США</td>
<td>32</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>«Bony», Туреччина</td>
<td>31,5</td>
<td>21,5</td>
<td>13,5</td>
</tr>
<tr>
<td>«Ewers», Німеччина</td>
<td>32</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>«Maximo», Німеччина</td>
<td>32</td>
<td>22</td>
<td>14</td>
</tr>
</tbody>
</table>

Складено автором за результатами власних досліджень
Висновки. Розглянуто сучасний асортимент трикотажних дитячих колготок вітчизняного і закордонного виробництва та встановлено, що споживачі віддають перевагу виробам, що мають високу якість. Дослідження 10 дитячих колготок за органолептичними показниками показали, що тільки зразок китайського виробництва має значні відхиленині лінійних розмірів та за виявленими дефектами відноситься до браку.

Література:

References:

Abstract. After analyzing the situation on the market of children's hosiery, we can say that consumers prefer the products made from natural raw materials and have high quality. One of the conditions for determining the quality of children's tights is the conduct of organoleptic studies, which enable the sensory organs to determine the conformity of the product with aesthetic and ergonomic requirements.

As a result of the study of pantyhose for organoleptic characteristics, it was found that nine of them belong to grade 1, and a sample of Chinese production has an inadmissible defect, therefore, it is related to marriage.

Eight out of ten children pantyhose have deviations of linear sizes within the normal range. The tights for the production of Market-Union LTD (China) have significant deviations that do not comply with the norms of GOST 8541. Children's tights (Turkey) that did not have markings, according to linear characteristics, are of the size: 62-68, 40, 8-10.

Key words: children's pantyhose, quality, organoleptic characteristics, grade.
УДК 656.073

TECHNOLOGICAL FEATURES OF TRANSPORTATION OF CARGO
OILFIELD SERVICES COMPANY

ТЕХНОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ТРАНСПОРТИРОВКИ ГРУЗОВ
НЕФТЕСЕРВИСНОЙ КОМПАНИИ

Sergaliev I. I. / Сергалиев И. И.
Магистрант
Astrakhan state technical University,
Astrakhan, Tatischeva, 16, 414056

Guyvik-Klyonova K. A. / Гуйвик-Клёнова К.А.
Ст. преп.
Caspian Institute of sea and river transport,
B. Khmelnitsky, 3, 414024

Аннотация. Полный логистический цикл (цикл выполнения заказа) в нефтесервисных компаниях представляет собой интервал времени между подачей заявки на транспортировку со стороны производственного подразделения компании и доставкой заказанного груза в пункт назначения – региональный склад, филиальный склад при производственной базе или непосредственно на месторождение. Наиболее значимой проблемой, возникающей при анализе логистической деятельности компании, являются высокие логистические издержки, и в первую очередь на осуществление транспортных операций. Прежде, чем говорить о решении подобных проблем, для начала проводится анализ технологических особенностей транспортировки грузов нефтесервисных компаний различными видами транспорта.

Ключевые слова: транспортировка буровых установок, нефтесервисные компании, логистика, негабаритные грузы, тяжеловесные грузы

Вступление.

Прежде чем говорить об особенностях транспортировки комплекса бурового оборудования, необходимо понять, что представляет собой буровая установка. Бывают мобильные буровые установки на базе гусеничной и колесной техники и стационарные буровые станции [1].

Буровая установка — комплекс бурового оборудования и сооружений, предназначенных для бурения скважин. Конструкция определяется назначением скважины, условиями и способом бурения. В общем виде буровая установка включает следующие основные элементы: главный энергопривод (основной двигатель), буровая вышка, оборудование для спуско-подъемных операций, буровые насосы, превенторы (противовыбросовое оборудование) и бурильная колонна [1].

Затрагивая вопрос транспортировки буровых установок и других перевозимых грузов нефтесервисных компаний, следует отметить, что буровые установки представляют собой негабаритный и зачастую крупнотоннажный груз, поэтому их перевозка не только тяжела, но и требует соблюдения особых норм и правил безопасности. Любая перевозка крупногабаритных и тяжеловесных грузов сопряжена с большей опасностью, рисками, зачастую с очень высокими транзакционными и транспортными издержками. Перевозка негабаритных грузов — один из самых сложных видов перевозки грузов на
любом транспорте.

Стоит отметить, что перевозка негабаритных грузов по России без разрешения невозможна. Для его получения нужно согласовать маршрут в специальных органах. Без опыта в этой сфере процесс получения разрешения занимает от 10 до 30 дней, при обращении к специалистам в этой области согласование занимает 3-7 дней. Если предстоит транспортировка особо большого объекта, то необходимо оформлять не просто маршрут, а специальный проект, сроки согласования которого могут достигать нескольких месяцев. Также при перевозке негабаритных грузов по закону обязательно должна присутствовать машина сопровождения – как правило, это патрульный автомобиль ГИБДД [2].

Маршрут движения в каждом случае разрабатывается индивидуально с учетом характеристик груза, транспортных средств и пожеланий заказчика. Перевозка буровой установки может потребовать изготовления надежной нестандартной оснастки. При необходимости перевозка буровых установок и оборудования сопровождается специалистами контактно-кабельной связи с автовышкой, осуществляющими подъем проводов по ходу движения [2].

Наиболее популярными способами перевозки негабаритных и тяжеловесных грузов являются [3]:
- автомобильная перевозка;
- морская перевозка;
- железнодорожная перевозка.

При автомобильном способе доставки негабаритных грузов используются низкорамные тяжеловозы, которые тянут мощные грузовые седельные тягачи – Урал, Volvo, Kраз, MAN, SCANIA. Эти тяжеловозы представляют собой платформу (травы) без ограничительных бортов. Ее преимущество в большой грузоподъемности, которая позволяет перевозить груз, превышающий саму платформу по габаритам. При этом высота платформы составляет всего 0,6 м - такая высота позволяет провозить высокие крупные объекты под мостами и в туннелях. Для перевозок крупногабаритных буровых установок массой более 60 тонн часто используется автопоезд, состоящий из тягача и низкорамных полуприцепов из модульных систем. В зависимости от габаритов и массы перевозимого негабаритного груза травы делятся на три класса: легкий, средний и тяжелый. Легкие используются для перевозки грузов массой до 50 тонн. Травы среднего класса для транспортировки грузов до 200 тонн. Травы тяжелого класса предназначены для доставки грузов массой свыше 200 тонн. Перевозка длинных грузов осуществляется с использованием телескопических прицепов. Также для погрузки, крепления и перевозки буровых установок могут потребоваться кranы и машины с манипуляторами. Перевозка негабаритных грузов автомобильным транспортом является наиболее мобильным из всех вариантов, а иногда просто единствено возможным способом доставить груз в пункт назначения [3, 4].

Морская перевозка подразумевает транспортировку негабарита на пароме. Морской транспорт широко используется, к примеру, для доставки различного негабаритного бурового оборудования из Европы в Россию. Плюс заключается
в том, что у многих городов Европы налажено прямое паромное сообщение с Санкт-Петербургом, где навигация осуществляется круглогодично. Большой преимуществом является также низкие грузовые тарифы. Для морских перевозок используются суда типа Ro-Ro (ролкеры), оснащенные специальной опускающейся рампой в носовой или кормовой части судна, которая позволяет вкатить и выкатить крупный груз в пункте назначения. При морских перевозках крупногабаритных грузов часто используют специальный тип контейнеров - «Flat rack», которые представляют собой платформу стандартного размера без крыши и боковых стенок [4].

Железнодорожная перевозка негабаритных грузов производится с использованием специальных низкорамных платформ или полувагонов, оснащенных торцевыми рампами для въезда техники. Это наиболее дешевый способ доставки на большие расстояния. Однако не везде есть железнодорожные пути и часто приходится дополнить железнодорожный транспорт автомобильным, т.е. использовать комбинированный тип транспортировки. На железной дороге к крупногабаритным и тяжеловесным грузам относят грузы массой свыше 60 т, длиной более 14 м, шириной более 3,25 м и высотой свыше 5,3 м [4].

При выборе маршрута транспортировки крупногабаритных и тяжеловесных грузов определяющую роль играют длина и ширина груза. Перевозчик отвечает за сохранность груза, поэтому на его ответственности лежит беспрепятственное прохождение груза под искусственными сооружениями. В соответствии с требованиями дорожных служб, запас по высоте должен составлять 15-20 см. Поскольку значительное количество искусственных сооружений, особенно в крупных городах, имеют высоту менее 5 м, то это отрицательно сказывается на маршруте транспортировки и усложняет его выбор.

Для обеспечения безопасности перевозок и возможности использования кузова-платформы, транспортные средства снабжают дополнительным оборудованием. Например, при перевозке судов применяют кильблок; при несущей способности корпуса груза — опорно-поворотное устройство на автомобиле (гидроманипулятор); для облегчения погрузочно-разгрузочных работ — ложемент и промприставку; для повышения эффективности — грузораспределительную балку, раму-вставку и дышло. При необходимости применяют комбинации из различного оборудования. Одно и то же оборудование может применяться в прямом или мультимодальном сообщении, однако при этом на разных видах транспорта может быть свое оборудование. Оно представлено в таблице 1 [4].

Поскольку отечественная техника значительно уступает по эксплуатационным характеристикам зарубежным аналогам (собственная масса на 30% больше, колесные нагрузки в 1,6 раз меньше, максимальная скорость с грузом ниже в 3,3 раза, тяговое усилие существенно ниже и т.д.), то тяжеловесные и негабаритные грузы в России обычно перевозят на транспортных средствах иностранного производства [4].
Таблица 1
Дополнительное оборудование при транспортировке негабаритных и крупнотоннажных грузов различными видами транспорта [4]

<table>
<thead>
<tr>
<th>Оборудование</th>
<th>Автомобильный</th>
<th>Железнодорожный</th>
<th>Водный</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ложемент</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Опорно-поворотное устройство</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Консоль</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Кильблок</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Грузораспределительная балка</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Промприставка</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Дышло</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

При транспортировке негабаритных грузов особое внимание необходимо уделять погрузочно-разгрузочным работам и перегрузке грузов с одного вида транспорта на другой. Процесс перегрузки представляет собой наибольшую опасность для груза, и по этой причине для него разрабатывают специальный проект. Выделяют три вида перегрузочных работ: вертикальный подъем-опускание; горизонтальное перемещение без отрыва от поверхности (скольжение, перекатывание, перемещение на тележках) и комбинированный с отрывом от земли. Крановые средства (самоходные, стреловые, мостовые, козловые и др.) и гидроподъемники более производительны, но и более дорогостоящие, часто требуют специальных площадок или причалов. Горизонтальное перемещение выполняют полиспастами, лебедками, тягачами и другими средствами. Это, как правило, дешевле, но более продолжительно и опасно [4].

Транспортировка установок для бурения должна учитывать следующие их особенности [2, 3, 5]:
- оборудование представляет собой конструкции с выступающими частями, имеет сложную форму и не всегда поддающийся определению центр тяжести. По этой причине установка закрепляется с помощью специальной оснастики по индивидуально разработанным схемам крепления;
- буровые установки, как и другое оборудование для добывающей промышленности, можно перевозить как в собранном, так и в разобранном виде. Во втором случае противовес, ротор и гусеницы передвижной буровой установки можно снять, при этом демонтаж выполняется после заезда на низкорамную платформу - траал;
- в ряде случаев крупные установки следует перевозить частями на разных платформах.

Процесс перевозки буровых установок в общем виде состоит из нескольких этапов [2, 3]:
- оформление необходимой документации и получение разрешений на перевозку негабаритного груза;
- организация сопровождения груза спецтехникой при необходимости;
- погрузка и крепление (фиксация) оборудования на транспортном средстве;
- проведение замеров и обследования установки, подготовка к перебазировке к месту погрузки;
- разработка и согласование оптимального маршрута;
- разгрузка оборудования в конечном пункте;
- перевозка груза в пункт назначения и осуществление контроля за передвижением и местонахождением груза.

Помимо негабаритных грузов - буровых установок - к грузам нефтесервисных компаний относятся отдельные составляющие буровых установок, например, долота, генераторы и батареи, фильтры и буровые растворы. Их транспортировка осуществляется с использованием обычных грузовых автомобилей с применением стандартных евро- или финподдонов в качестве товароносителя. Буровые растворы транспортируются на поддонах в сухом виде, расфасованные в мешки, а также в мягких контейнерах весом в 1000 килограмм. Перевозка данных грузов не требует особых условий транспортировки и наличия парка специализированных транспортных средств, поэтому данные грузы можно отнести к категории общих грузов.

Также необходимо понимать, что перевозка грузов нефтесервисных компаний осуществляется, как правило, в два этапа: этап доставки грузов до обслуживающих ряд месторождений складов, и этап доставки грузов с этих складов до конкретных месторождений. С учетом географических особенностей на данных этапах используются различные типы перевозчиков.

Заключение и выводы.
Процесс транспортировки играет важнейшую роль в уровне оказания логистических услуг нефтесервисными компаниями. При этом, этап транспортировки сопряжен, как правило, с высокими логистическими издержками. И это является объектом особого внимания с целью дальнейшей оптимизации со стороны нефтесервисных компаний. Для того, чтобы понимать особенности транспортировки комплекса бурового оборудования нефесервисных компаний, было рассмотрен общий вид буровой установки. Сделано указание на особую сложность подобных перевозок в силу того, что грузы являются крупногабаритными и тяжеловесными. Рассмотрены специфические особенности осуществления транспортировок таких грузов силами автомобильного, железнодорожного и водного транспорта. Указано дополнительное оборудование, используемое на каждом виде транспорта. Перечислены этапы процесса перевозки буровых установок.

Литература:
2. Официальный сайт перевозчика крупногабаритных грузов - [Электронный ресурс]. – http://www.gruznavigator.ru/info/
3. Официальный сайт перевозчика крупногабаритных грузов -

5. Официальный сайт перевозчика крупногабаритных грузов - [Электронный ресурс]. – http://www.tec-everest.ru/

References:

Abstract. Entry. Drilling rig — a complex of drilling equipment and structures designed for drilling. Touching upon the issue of transportation of drilling rigs and other transported cargoes of oilfield service companies, it should be noted that drilling rigs are oversized and often large-capacity cargo, so their transportation is not only heavy, but also requires compliance with special safety rules and regulations. It is worth noting that the transportation of oversized cargo in Russia without permission is impossible. In the automotive method of delivery of oversized cargo used low-bed heavy trucks, which pull powerful truck tractors – Ural, Volvo, KrAZ, MAN, SCANIA. Sea transportation involves transportation of oversized cargo by ferry. Sea transport is widely used, for example, for the delivery of various oversized drilling equipment from Europe to Russia. Railway transportation of oversized cargo is carried out using special low-frame platforms or gondola cars equipped with end ramps for the entry of equipment. This is the cheapest way to deliver over long distances. When choosing the route of transportation of bulky and heavy cargo, the length and width of the cargo play a decisive role. To ensure the safety of transportation and the possibility of using the body platform, vehicles are provided with additional equipment. When transporting oversized cargo, special attention should be paid to loading and unloading and transshipment of goods from one mode of transport to another. The process of transshipment is the most dangerous for the cargo, and for this reason a special project is being developed for it. In addition to oversized cargo - drilling rigs - the cargo of oilfield service companies include individual components of drilling rigs, such as bits, generators and batteries, filters and drilling fluids. They are transported using conventional trucks with the use of standard Euro - or typodont as euronotes.Summary and conclusions. The transportation process plays a crucial role in the level of logistics services provided by oilfield services companies. At the same time, the transportation stage is usually associated with high logistics costs. And this is the object of special attention for the purpose of further optimization by oil service companies. In order to understand the features of transportation of drilling equipment complex of non-service companies, a General view of the drilling rig was considered. An indication of the particular complexity of such transportation due to the fact that the goods are large and heavy. The specific features of the transportation of such goods by road, rail and water transport are considered. The additional equipment used on each mode of transport is specified. Lists the stages of the process of transportation of drilling rigs.

Key words: transportation of drilling rigs, oilfield service companies, logistics, oversized cargo, heavy cargo
УДК 656.073
TRANSPORTATION AND LOGISTICS FOR FOREST PROJECTS USING SIMULATION METHOD
ТРАНСПОРТНО-ЛОГИСТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ЛЕСНЫХ ПРОЕКТОВ С ПРИМЕНЕНИЕМ МЕТОДА МОДЕЛИРОВАНИЯ

Chertin A.N. / Чертин А.Н.
Магистрант
Astrakhan state technical University, Astrakhan, Tatischeva, 16, 414056

Guyvik-Klyonova K. A. / Гуйвик-Клёнова К.А.
Ст. преп.
Caspian Institute of sea and river transport, B. Khmelnitsky, 3, 414024

Аннотация. На сегодняшний день для лесопромышленного комплекса России характерны следующие тенденции: постоянно возрастающая конкуренция, изменения на рынках поставщиков и потребителей, территориальная разобщенность и существенное влияние природных факторов. С учетом данных условий становится актуальным вопрос оперативного принятия оптимальных и эффективных управленческих решений в части планирования перевозочного процесса. В качестве одного из возможных вариантов решения данной проблемы предлагается создание новых моделей перевозочного процесса с учетом отраслевых особенностей лесных проектов.

Ключевые слова: лесопромышленный комплекс, логистика лесных проектов, моделирование, лесные грузы, транспортировка лесных грузов

Вступление.
В рамках написания магистерской диссертации был проведен анализ конъюнктуры лесопромышленного комплекса России. Основной тенденцией отрасли можно считать сохранившийся высокий рост экспорта лесопродукции по сравнению с импортом (19% по экспорту против 7% по импорту). При этом наиболее развитой отраслью лесопромышленного комплекса России является производство пиломатериалов. Продукция данной отрасли применяется в самых разных сферах строительства и ремонта. Общее число зарегистрированных предприятий в этой отрасли превышает 20 тысяч объектов. Россия является крупным игроком на экспортном рынке пиломатериалов с объёмом 23,8 млн кубометров, уступая по этому показателю только Канаде.

Стоит отметить, что на фоне высокого темпа роста экспорта лесопродукции российское производство пиломатериалов как раз-таки ориентировано, в первую очередь, на экспорт (рис. 1) [1].

По итогам 2018 года был отмечен рост по производству всех основных видов продукции лесопромышленного комплекса России. Среди них:
- Круглый лес - рост около 8%;
- Пиломатериалы (суммарно хвойные и лиственные) – рост экспорта на 6%;
- ДСП/OSB - рост 16%;
- MDF/ДВП - рост около 8%;
- Фанера/LVL - рост производства на 7%; рост экспорта более чем на 8%;
- Целлюлоза - рост производства около 2%; рост экспорта на 1,6%;
- Бумага и картон - рост производства на 5,3%; рост экспорта на 1,6%;
- Мебель: объем производства вырос на 25%; импорт мебели вырос примерно на 15%; экспорт мебели продолжает оставаться низким — более чем впятеро ниже, чем импорт.

Рис. 1 Динамика и структура рынка пиломатериалов в РФ в 2013-2017 гг. и прогноз до 2030 г., млн куб. м

Общий экспорт продукции лесопромышленного комплекса по итогам 2018 года составил 55% от общего объема производства. В таблице 1 представлены данные занимаемой доли каждого вида лесопроукции РФ в общемировом объеме производства и экспорта соответственно.

<table>
<thead>
<tr>
<th>Лесопродукция</th>
<th>Доля РФ в мировом производстве, %</th>
<th>Доля РФ в мировом экспорте, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Круглый лес</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Пиломатериалы</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>Целлюлоза</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Бумага и картон</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Древесные плиты</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Прочее, включая энергику</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Мебель</td>
<td>0,8</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Согласно данным аналитического агентства «StepChange Consulting» прогнозы по экспортно-ориентированной продукции лесопромышленного комплекса положительные.

Основной фактический экономический итог 2018 года — преодоление затяжного кризиса 2014-2017 годов и начало медленного роста. Это говорит о медленном выходе из кризиса, с возможными периодическими «провалами» в ближайшие годы — например, при ухудшении внешней или внутренней конъюнктуры. На рисунке 2 представлено место лесной промышленности в числе наиболее значимых отраслей для государства [2].

По итогам проводимого анализа можно сделать следующие выводы:
— экспортно-импортная динамика выражена в схожих тенденциях во всех отраслях лесной промышленности;
— сокращаются объемы импорта лесопродукции иностранного производства;

Согласно данным аналитического агентства «StepChange Consulting» прогнозы по экспортно-ориентированной продукции лесопромышленного комплекса положительные.

Основной фактический экономический итог 2018 года — преодоление затяжного кризиса 2014-2017 годов и начало медленного роста. Это говорит о медленном выходе из кризиса, с возможными периодическими «провалами» в ближайшие годы — например, при ухудшении внешней или внутренней конъюнктуры. На рисунке 2 представлено место лесной промышленности в числе наиболее значимых отраслей для государства [2].

По итогам проводимого анализа можно сделать следующие выводы:
— экспортно-импортная динамика выражена в схожих тенденциях во всех отраслях лесной промышленности;
— сокращаются объемы импорта лесопродукции иностранного производства;
Рис. 2 Место лесной промышленности в числе наиболее значимых отраслей для государства

— продолжается рост экспорта российской продукции на внешние рынки;
— увеличение инвестиций в ориентированные на внешние рынки перерабатывающие производства;
— сокращается доля продаж лесоматериалов на внутреннем рынке в связи с падением платежеспособного спроса.

На сегодняшний день большинство предприятий лесоперерабатывающей промышленности ищут возможности усиления своей доли на внешних рынках. Этого можно достигнуть посредством наращивания производственных мощностей, поиска новых рынков сбыта, вывода новых продуктов. Внутренний рынок для экспортёров лесопродукции остается малопривлекательным.

Астраханский регион является одним из пунктов экспорта российских лесоматериалов в адрес Ирана, и одновременно с этим, транзитным участком МТК «Север-Юг». Полная реализация проекта по созданию МТК «Север-Юг» предполагает его протяженность около 4,5 тыс. км от Санкт-Петербурга до порта Бендер-Аббас. При этом по территории России проходит около 33-35% всей длины МТК «Север-Юг».

Еще одним преимуществом реализации проекта создания МТК «Север-Юг» является его возможность быть востребованным не только для грузовых перевозок в направлении «Европа – Азия», но и для обслуживания региональных грузопотоков.
Следует также указать, что МТК «Север-Юг» способен обеспечить наибольшую эффективность перевозочного процесса ввиду того, что перевалочные пункты и пересечения с существующими путями и МТК (например, ТРАСЕКА, трансазиатские коридоры) позволяют перегрузить товары и направить их на запад или восток от коридора.

Еще одной возможностью коридора является его способность обеспечить скоростные трансконтинентальные перевозки грузов в объеме от 20 до 50 млн. тонн в год. Обеспечение сжатых сроков перевозки требует применения на всем протяжении коридора интермодальных технологий, ведущих к максимальному сокращению дополнительной обработки грузов по пути следования.

Оптимизация планирования маршрутов и использования парка транспортных средств имеет существенное значение для повышения эффективности логистических систем предприятий. Оптимизация планирования обеспечивает наиболее рациональное использование технических ресурсов, снижение себестоимости перевозок, повышение прибыльности, позволяет предприятию гибко и в минимальные сроки реагировать на постоянно изменяющийся спрос на перевозки [3].

Ввиду того, что развитие МТК «Север-Юг» неизбежно приведет к росту товарооборота между Россией и Ираном, как одного из главных внешнеторговых партнеров РФ, а также того факта, что лесоматериалы занимают весомую долю в российско-иранском товарообороте, приобретает особую важность вопрос повышения эффективности транспортных схем поставки лесоматериалов. Особенно с учетом условий многовariantности видов перевозимой продукции разными типами транспортных средств и множеством перегрузочных пунктов.

При этом, следует указать, что существующие стандартные методы планирования транспортно – логистического процесса перевозок лесоматериалов не учитывают многовидовости и многовariantности обозначенного процесса, следовательно, их применение в современных условиях недостаточно эффективно, а построение новых, эффективных методов, невозможно без применения математического моделирования и программирования.

При этом, важным аспектом построения математической модели транспортно-логистического процесса является необходимость создания достаточно простой модели, которая при этом могла бы все же приводить к конструктивным выводам об исследуемой системе. Модель транспортно-логистического процесса должна отвечать следующим условиям:
- модель должна отражать основные свойства исследуемого объекта с точки зрения интересующего параметра или их группы;
- модель должна быть достаточно проста, а результаты должны быть легко интерпретируемы;
- модель должна быть адаптирована под имеющиеся исходные данные;
- модель должна быть легко модифицируемой под появлением новых данных и сведений;
- модель должна быть составлена так, чтобы обеспечить расчеты...
имеющимися средствами [4].

Как известно, в рыночной экономике при планировании перевозок затрагиваются интересы нескольких субъектов, что приводит к возникновению ситуации, при которой объектом перевозчика остается маршрут и подвижной состав, работающий на этом маршруте, однако окончательные параметры процесса доставки груза определяются клиентами.

Поэтому, актуальной проблемой является формирование комплексной динамической модели оперативного планирования перевозочного процесса, основанного на логистическом подходе, учитывающего как многообразие вариантов взаимодействия поставщик – перевозчик – получатель или более сложных схем организации перевозок с учетом логистических посредников, например, экспедиционных фирм, так и требования выдвинутые клиентами на время доставки и партию груза.

Проведенный анализ возможности применения метода моделирования в реализации транспортно-логистического обеспечения лесных проектов позволил сделать следующие выводы.

Транспортно – логистический процесс доставки лесоматериалов характеризуется большой территориальной разобщенностью, большой номенклатурой продукции, зависимостью от природных условий.

Транспортно – логистический процесс доставки лесного сырья представляет собой сложную систему, которой присуща сетевая структура и динамика.

Большое влияние на транспортно – логистический процесс оказывают множество неопределенностей и случайных факторов, такие как сезонность, виды транспортных средств, колебание запасов лесопродукции, цен и тарифов.

Транспортно – логистический процесс является системой и, как следствие, обладает всеми характерными для нее свойствами, под элементами которой необходимо понимать пункты заготовки древесины, погрузки, разгрузки, складирования, переработки, транспортные средства, средства погрузки и разгрузки, прочее оборудование, следовательно, к транспортно – логистическому процессу, при его оптимизации, предъявляют все те требования, что и к системе.

Заключение и выводы.

Целью функционирования системы является минимизация суммарных затрат на транспортировку лесопродукции, и соответственно, получению максимальной прибыли, обе цели взаимосвязаны и вытекают одна из другой, модель эффективной транспортно – логистической сети должна учитывать совокупные затраты всех элементов системы.

Математическая модель дает возможность мгновенно отвечать на вопросы, на которые в реальности потребовался бы достаточно длительный промежуток времени.

Стандартные схемы перевозки лесоматериалов малоэффективны, а построение новых, эффективных методов, невозможно без применения инструментария логистики.
Литература:
1 - Федеральная служба государственной статистики http://www.gks.ru
3 – Палагин Ю.И. Транспортная логистика и интермодальные перевозки, технологии, оптимизация, моделирование. СПб.: Политехника, 2017

References:
1 - Federal state statistics service http://www.gks.ru
3 – Palagin Yu. I. Transport logistics and intermodal transport, technologies, optimization, modeling. SPb.: Polytechnic, 2017

Abstract.
Entry. As part of the writing of the master's thesis, the analysis of the situation of the timber industry in Russia was carried out. Based on the results of the analysis, the following conclusions can be drawn: export-import dynamics is expressed in similar trends in all branches of the forest industry; import volumes of forest products of foreign production are reduced; Russian exports to foreign markets continue to grow; increased investment in foreign-oriented processing industries; the share of timber sales in the domestic market is decreasing due to the drop in effective demand. Astrakhan region is one of the export points of Russian timber to Iran, and at the same time, a transit section of the MTK "North-South". Optimization of route planning and use of the vehicle fleet is essential to improve the efficiency of logistics systems of enterprises. At the same time, it should be noted that the existing standard methods of planning the transport and logistics process of timber transportation do not take into account the multi-species and multi-variant of the indicated process, therefore, their application in modern conditions is not effective enough, and the construction of new, effective methods is impossible without the use of mathematical modeling and programming. As is known, in a market economy, the interests of several entities are affected when planning transportation, which leads to a situation in which the object of the carrier is the route and the rolling stock working on this route, but the final parameters of the delivery process are determined by the customers. Therefore, an urgent problem is the formation of a complex dynamic model of operational planning of the transportation process, based on the logistics approach, taking into account both the variety of options for interaction between the supplier – carrier – recipient or more complex schemes of organization of transportation, taking into account logistics intermediaries, for example, forwarding companies, and the requirements put forward by customers at the time of delivery and shipment.

Key words: timber industry complex, logistics of forest projects, modeling, timber cargoes, transportation of forest cargoes
Аннотация. В статье рассматривается вагонопоток, состоящий из парка вагонов различных собственников, прибывающих с внешней сети (ВС) на металлургическое предприятие. Спецификой транспортной логистики является подача прибывающих вагонов с сырьем под погрузку готовой продукции. Как правило, это влечет за собой дополнительные простои, превышающие нормативы нахождения подвижного состава внутри комбината данная ситуация приводит к существенным экономическим издержкам.

Выполненый анализ позволит разработать модель функционирования транспортной системы по обработке входящего вагонопотока.

Ключевые слова: внешний вагонопоток, грузопоток, прокатные цеха, отгрузка металлопроката, модель транспортного обслуживания, дополнительные простои.

Вступление.
Логистическая система железнодорожного транспорта металлургического предприятия неоднородна: с одной стороны присутствует строго регламентируемые технологические циклы перевозок жидких металлов и горячих грузов, с другой стороны перевозки массовых грузов отправляемых на внешнюю сеть и поступающих из нее.

Главной задачей логистического обслуживания в пределах металлургического предприятия является доставка готовой продукции определенного вида в необходимом количестве в конечный пункт потребления за наиболее короткий период. Тем самым, логистический подход к поставленной задаче, удовлетворяет сформированный маркетинговый спрос с минимальными затратами [1].

Ранее, при формировании составов для отгрузки готовой продукции на внешнюю сеть, применялся, так называемый «традиционный подход», при котором каждое звено логистической цепи имело свою систему управления, ориентированную на собственные цели и критерии эффективности. Результирующим материальным потоком всей логической цепи является выходной поток последнего звена. Его параметры определяются независимыми управляющими воздействиями, осуществляемыми последовательно в каждом звене логистической цепи. Понятно, что с точки зрения общих целей управления они являются случайными. В результате, полученные показатели,
на выходе, как правило, далеки от оптимальных.

В последнее время на металлургических предприятиях стало уделяться большое внимание оптимизации при разработке графиков формирования вагонопотоков по предприятию с применением логистической системы для минимизации простоев подвижного состава на путях комбината.

Анализ литературы. Проблема взаимодействия производства и транспорта решалась многими исследователями. Первоначально рассматривались конкретные случаи взаимодействия без учета системных свойств промышленного транспорта, динамики транспортных и производственных процессов [2]. Последующее развитие исследований проблемы взаимодействия пошло по пути поиска форм и методов оптимизации управления вагонопотоками с целью приспособления к аритмии производственных процессов, за счет перераспределения вагонопотоков. Новые подходы основываются на двухстороннем понимании взаимодействия производства и транспорта с акцентом на активизацию возможностей производства [3-5]. В последнее время наиболее широкое распространение получили логистические принципы управления потоковыми процессами, основанные на функциональной интеграции участников производственно-транспортных систем, а также реализации резервов, заложенных в согласовании материальных и документо-информационных потоков на различных этапах их прохождения [6].

Цель и постановка задачи.

Целью статьи является анализ продвижения внешнего вагонопотока в транспортной логистике металлургического предприятия для повышения эффективности его использования и минимизации затрат на транспортные расходы.

Задачи:
• описать существующую схему продвижения вагонопотока по обеспечению отгрузки готовой продукции;
• проанализировать и выявить составные элементы логистического обслуживания вагонопотоков;
• формирование модели продвижения внешнего вагонопотока в логистической системе металлургического предприятия.

Изложение основного материала.

Логистическое обслуживание металлургического предприятия представляет собой сложный процесс доставки готовой продукции от производителя к ее потребителю, где задействованы вагоны различной формы собственности и различных объемов перевозки. Для обеспечения нормального стабильного функционирования производства, необходимо четко наладить взаимодействие всех участников транспортного процесса (поставщик порожних вагонов – железнодорожный транспорт предприятия – цех грузоотправитель).

Предметом исследования приняты цеха холодного и горячего проката металлургического комбината, где погрузка листового проката производится в вагоны различных собственников (рис. 1).
Авторская разработка

Рассматриваемая система представляет собой сложный динамичный производственно-коммерческий комплекс, характерной особенностью которого является мобильность одних объектов (локомотивы, вагоны, автомобили) и стационарные объекты (путевая инфраструктура, грузовые фронты, пункты ремонта и обслуживания подвижного состава). Все эти объекты целесообразно рассматривать с точки зрения повышения эффективности их функционирования как микрологистической системы [7]. Многими исследованиями доказано наличие значительных непродуктивных простоев вагонов. Данное утверждение подтверждается тем, что при нормальном законе распределения продолжительности нахождения вагонов ВС на предприятии среднеквадратичное отклонение достигает 15-20% от среднего значения. На базовом предприятии среднее значение продолжительности нахождения вагонов ВС на предприятии составляет 15,3, среднеквадратичное отклонение – 2,6. Разброс между тср - 2σ и тср + 2σ равен 9,2 часов — это реальный резерв сокращения продолжительности максимального простоя вагонов ВС на путях промышленного предприятия, за счет правильного планирования и управления.

Вагоны, попадающие в транспортную систему предприятия, проходят последовательность операций: транспортных, погрузочно-разгрузочных,
коммерческих и др. За редким исключением эти операции производятся не с единичными вагонами, а с группой вагонов: поезд, состав, передача, подача на грузовой фронт. Количественный состав групп вагонов меняется: расформирование, формирование, переформирование. Наиболее сложная технология прохождения вагонов на промышленном предприятии – это последовательность двух грузовых операций: разгрузка прибывшего сырья и погрузка готовой продукции.

При формировании модели функционирования транспортной системы [8] одним из важнейших вопросов является рассмотрение управляющих воздействий на перемещение вагонов в зависимости от изменения ситуации в производственной и транспортной подсистемах предприятия.

Процесс управления основывается на том, что имеется конечное множество технологических последовательностей операций от момента прибытия группы вагонов до момента отправления на Укрзализницю (УЗ). Обобщенный орграф переработки вагонопотоков внутри предприятия имеет вид, который представлен на рисунке 2.

Интенсивность рассматриваемых на орграфе вагонопотоков определяется объемом выпуска готовой продукции и, следовательно, объемом и сроками подачи сырья, поэтому первичными являются $\lambda_{\text{зп}}$ и $\lambda_{\text{пс}}$.

Эти два потока взаимозависимы, но установить функциональную связь между ними не представляется возможным из-за влияния большого количества дополнительных факторов (накапливание сырья, промежуточное складирование и др.). Параметры остальных потоков определяются исходя из необходимости максимально точно удовлетворить потребности прокатных цехов в «порожняке» для погрузки готовой продукции.

Выводы.

В данной статье рассмотрен процесс отгрузки металлопроката в вагоны различных операторских компаний, осуществляемый после выгрузки сырья из вагонов, прибывших с внешней сети.

Анализом логистической транспортной системы крупного металлургического предприятия установлены основные элементы модели транспортного обслуживания прокатных цехов и схема их взаимодействия.

Предлагаемая модель позволяет значительно уменьшить непродуктивные простои подвижного состава на внутризаводских путях и снизить транспортные затраты предприятия.

Литература:

Рисунок 2 - Обобщенный орграф переработки внешнего вагонопотока

Авторская разработка

References:

Abstract.
The article discusses the railcar flow, consisting of a railcars fleet of various owners, arriving from the external network (EN) to the metallurgical enterprise. The specificity of transport logistics is the supply of arriving railcars with raw materials for loading finished products.

As a rule, this entails additional downtime that exceeds the standards for locating rolling stock inside the plant, this situation leads to substantial economic costs.
The analysis will allow to develop a model of the functioning of the transport system of the incoming railcar traffic.

Key words: external car traffic flow, cargo traffic, rolling shops, metal rolling shipment, model of transport service, additional costs.
Анализ рынка перевозок проектных грузов.

Аннотация. В работе рассматриваются тенденции роста различных отраслей промышленности и связанное с этим развитие проектов, для строительства которых потребовалось использование нового уникального оборудования, основу из которых составляют негабаритные грузы.

Ключевые слова: проектные грузы, негабаритные грузы, инфраструктурные проекты.

Вступление

Мировая экономика последних десятилетий испытывает существенный спрос на крупные инфраструктурные проекты, которые получили свое развитие в отраслях промышленности занятых разработками в области нефтегазодобычи, проектировании и строительстве заводов для химической и нефтехимической промышленности, развитии электроэнергетики и горнодобывающих платформ. Массивные конструкции и крупногабаритные наземные грузы перевозятся из различных мест в несколько международных пунктов назначения одновременно. Экономический рост развивающихся стран, стран с переходной экономикой и модернизация инфраструктуры в развитых экономических странах объясняет применение специализированных проектов, связанных с ведущими отраслями промышленности.

Основной текст

Разработка и планирование проектов перевозки негабаритных грузов с середины-конца XX века велась заблаговременно и за несколько лет до начала самой перевозки. Это было вызвано недостаточными техническими возможностями транспортного оборудования и техники того времени поэтому большинство научных работ по данному вопросу посвящено развитию технических и технологических схем при организации перевозок негабаритных грузов на различных видах транспорта. Так, например, работы Позднякова В.А., Чернышевой Ю.А., Амирова Т.К. [1–3] посвящены детальному изучению различных технологических схем доставки негабаритных грузов автомобильным транспортом, однако отсутствуют требования к перевозке морским транспортом. В работах Писаревского Г.Е. Троицкой Н.А. и Павлова В.В. [4,5] основной акцент делается не только на приспособленность железнодорожного транспорта к перевозке негабаритных грузов, но и раскрыты технические и технологические приемы перевозок грузов, приведен сравнительный анализ перевозок грузов различными видами транспорта, однако при этом не учтена возможность использования морского транспорта. Отельное место отведено вопросам организации перевозки негабаритных...

Ввиду того что аспекты организации перевозок негабаритных грузов для авиационного транспорта отражены в научных работах А.Н. Матовникова где предложена разработка методики моделирования погрузочно-разгрузочных процессов а также разработан погрузочно-разгрузочный комплекс негабаритных грузов для авиаперевозок, а вопросы организации перевозок негабаритных грузов на железнодорожном транспорте, проблемы возникающие при перевозке таких грузов и пути их решения в работах Р.Х. Имаметдинова то учитывая использование современного подхода к организации перевозок в интермодальном и смешанном сегменте с участием водного транспорта возникла необходимость также рассмотреть некоторые организационные аспекты перевозки проектных грузов на морском транспорте и применить некоторые методики организации и планирования таких перевозок является актуальной задачей.

Таблица 1.
Сравнительная таблица импорта и экспорта проектных грузов из Китая (в долл. США) в годовом эквиваленте. Дата выпуска: 23 сентября 2018 г.

<table>
<thead>
<tr>
<th>Год</th>
<th>Всего</th>
<th>Экспорт</th>
<th>Импорт</th>
<th>Торговый баланс</th>
<th>Аналогичный период прошлого года ±%</th>
<th>Импорт и экспорт</th>
<th>Экспорт</th>
<th>Импорт</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>41,606</td>
<td>22,321</td>
<td>19,285</td>
<td>3,036</td>
<td>-5.5</td>
<td>1.4</td>
<td>-12.4</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>69,602</td>
<td>27,350</td>
<td>42,252</td>
<td>-14,902</td>
<td>30.0</td>
<td>4.6</td>
<td>54.1</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>115,436</td>
<td>62,091</td>
<td>53,345</td>
<td>8,746</td>
<td>3.4</td>
<td>18.2</td>
<td>-9.8</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>280,864</td>
<td>148,780</td>
<td>132,084</td>
<td>16,696</td>
<td>18.7</td>
<td>23.0</td>
<td>14.2</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>474,297</td>
<td>249,203</td>
<td>225,094</td>
<td>24,109</td>
<td>31.5</td>
<td>27.8</td>
<td>35.8</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>1,421,906</td>
<td>761,953</td>
<td>659,953</td>
<td>102,001</td>
<td>23.2</td>
<td>28.4</td>
<td>17.6</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>2,974,001</td>
<td>1,577,754</td>
<td>1,396,247</td>
<td>181,507</td>
<td>34.7</td>
<td>31.3</td>
<td>38.8</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>3,953,033</td>
<td>2,273,468</td>
<td>1,679,564</td>
<td>593,904</td>
<td>-8.0</td>
<td>-2.9</td>
<td>-14.1</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>4,107,142</td>
<td>2,263,349</td>
<td>1,843,793</td>
<td>419,556</td>
<td>11.4</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Особенность специализированных проектов в том, что вовлеченные в проект процессы потребовали применения уникального оборудования на основе высокотехнологичных агрегатов, узлов и механизмов, которые по своей сути требуют специальных условий перевозки не подвергаться разборке, демонтажу, отсоединению на составные части, блоки и механизмы ввиду высокой стоимости и уникальности производства. Основываясь на целевом назначении грузов, возникла необходимость обособить данную группу в отдельную категорию под названием «проектные грузы» подразумевая под
этим понятием партии груза которые состоят из крупногабаритных, тяжеловесных, длинномерных мест, а также дорогостоящих, технологически сложных единиц специального оборудования и материалов предназначенных для удаленной сборки/монтажа/конструирования в процессе строительства различного рода проектов (заводов, фабrik, станций, мостов, причалов, ж/д путей и т.д.) и рассмотреть организационные аспекты для осуществления таких перевозок.

Согласно Национальному бюро статистики Китая только за 2017 календарный год суммарный объем экспорта таких грузов оценивался в 383 млрд. долларов увеличившись на 11.6% по сравнению с предыдущим годом и уже только за первое полугодие текущего 2018 года увеличился на 10.1%. Перечень отраслей промышленности в которых используются проектные грузы довольно широк, однако за последние несколько десятилетий потребности в транспортировке для конкретных отраслей промышленности продолжают расти более быстрыми темпами. Ожидается, что глобальные специализированные проекты для ветряных электростанций будут расти в Азии, Северной Америке и Европе. Строительство ядерных заводы в Китае, Индии, Южной Америке и на Ближнем Востоке также будет способствовать росту такого рода перевозок.

Преос на высокотехнологичное оборудование для горнодобывающей промышленности увеличивается из-за растущей потребности в металлопрокатных изделиях. По прогнозам, к 2035 году потребление природного газа во всем мире увеличится почти на 50%. Внушительные объёмы запасы сланцевого газа в Соединенных Штатах также являются одним из наиболее перспективных факторов, которые следует учитывать, поскольку здесь также наблюдается характерный спрос на проектные грузы.

Проектный груз может состоять из нескольких партий единичных отправлений, но может и охватывать широкий диапазон, как по объему перевозимых грузов, так и по стоимости. Это может означать что с целью реализации одного конкретного проекта одно или несколько грузовых мест оборудования транспортируются из пункта A в пункт B или в несколько различных пунктов назначения одновременно в течение определенного периода времени. Оборудование и материалы могут поставляться как по всему миру, так и для разработки одного определенного проекта в масштабах отдельно взятой страны, может и включать интермодальные перевозки с использованием автомобильного или железнодорожного транспорта, могут быть задействованы вспомогательные краны, морские или речные суда, транспорты и баржи. Перевозка такой группы грузов может осуществляться смешанными видами транспорта, как на внутреннем рынке, так и для международной торговли. Так как транспортировка подобных грузов посредством автотранспорта, железнодорожного или авиатранспорта является в ряде случаев либо затруднительным, дорогостоящим и подчас и трудноосуществимым процессом, а если вообще говорить о трансконтинентальных перевозках, то именно морские перевозки – самый доступный и вместе с тем экономичный способ транспортировки проектных грузов, которые и являются основными объектами перевозок данного вида транспорта на сегодняшний день. Что касается самого
морского транспорта то здесь ведущим морским перевозчиком продолжает оставаться компания Maersk, доля рынка которой составляет 15%. Второе место занимает компания «Mediterranean Shipp.Co», доля рынка 13%. Третье место - «CMACGM Group» с долей 8%. И далее 10 крупнейших фирм контролируют 60% мирового рынка.

Согласно предварительным оценкам ЮНКТАД, объем мировых морских перевозок уже в 2014 году увеличился на 3,4%, т.е. так же, как и имел тенденцию роста в 2013 году. В частности, доля сухих массовых грузов составляет 15% что соизмеримо контейнерными перевозками и превышает долю сухих навалочных грузов таких как уголь, руда и долю прочих сухих грузов в этом сегменте. Таким образом объем перевозок возрос более чем на 300 млн. т до 9,84 млрд. тонн. Эта динамика была отмечена в контексте таких факторов, как: а) замедление роста в крупных развивающихся странах с формирующейся рыночной экономикой; б) снижение цен на нефть и ввод в эксплуатацию новых нефтеперерабатывающих мощностей; и в) медленное и неравномерное оживление экономики в развитых странах. Значительное увеличение количества разрабатываемых и строящихся проектов побудило ведущие мировые компании искать наиболее эффективные методы транспортировки грузов для строительства таких проектов, поскольку, приступа к крупным и дорогостоящим проектным грузовым операциям, пропорционально возрастают и соответствующие риски во время проведения этих операций. Перевозка проектных грузов относятся к числу наиболее сложных и трудоемких.

Заключение и выводы.

В статье рассмотрены организационные аспекты перевозки проектных грузов на морском транспорте и применение методики организации и планирования таких перевозок. Тема актуальна, подтверждается наличием публикаций и развитием научно-технического прогресса в производстве
уникальных проектных грузов. Организация перевозки проектных грузов включает в себя ряд основных операций: такие как комплекс подготовительных мероприятий, организацию погрузочно-разгрузочных работ, перевозку и хранение. Так предварительное планирование является решающим начальным шагом, детальная проработка которого ведет к успешному осуществлению всей цепи последующих этапов перевозки.

Литература:
1. Поздняков В.А. Логистический подход к организации перевозок крупногабаритных и тяжеловесных грузов автомобильным транспортом через железнодорожные переезды. Автореферат. М., 1999. - 17с.
2. Чернышева Л.А. Организация пропуска крупногабаритных и тяжеловесных автомобильных грузов по автомобильным дорогам. //Автомобильные дороги, 2001, №4, 64с.
11. Обзор морского транспорта конференции ООН по торговле и развитию (UNCTAD/ RMT/2015)

References.
8. A.A. Laughs, A.D. Malov, A.M. Ostrovsky. Gruzovanie, safety and securing of cargo
Abstract: The article examines the growth trends of various industries and the related development of projects for the construction of which required the use of new expensive unique project cargoes, the process of transportation of which includes a whole range of activities.

Key words: project cargo, oversized cargo, infrastructure projects, transportation planning.

Научный руководитель: к.т.н., доц. Акимова О.В.
Статья отправлена: 04.06.2019 г.
© Мельник А.Н.
Expert-Peer Review Board of the journal

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree and Title</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iliyev Veselin</td>
<td>candidate of technical sciences assistant professor</td>
<td>Volgograd State Technical University</td>
</tr>
<tr>
<td>Chigirinskiy Yuliy L’ovich</td>
<td>candidate of technical sciences assistant professor</td>
<td>Odessa National Polytechnic University</td>
</tr>
<tr>
<td>Shpinkovskiy Aleksandr Anatol’yevich</td>
<td>candidate of technical sciences assistant professor</td>
<td>Kharkov National Technical University of Agriculture named after Petr Vasilenko</td>
</tr>
<tr>
<td>Muzylov Dmitriy Aleksandrovich</td>
<td>candidate of technical sciences assistant professor</td>
<td>Stavropol State Agrarian University</td>
</tr>
<tr>
<td>Privalov Yevgeniy Yevgrafovich</td>
<td>candidate of technical sciences assistant professor</td>
<td>Pavolzhsky State University of Telecommunications and Informatics</td>
</tr>
<tr>
<td>Kovalenko Tat'yana Antol'yevna</td>
<td>candidate of technical sciences assistant professor</td>
<td>Khmelnitsky National University</td>
</tr>
<tr>
<td>Tleuov Askhat Khalilovich</td>
<td>doctor of technical sciences professor</td>
<td>Kazakh Agrotechnical University</td>
</tr>
<tr>
<td>Sysoyeva Vera Aleksandrovna</td>
<td>candidate of architectural sciences assistant professor</td>
<td>Belarusian National Technical University</td>
</tr>
<tr>
<td>Nadopta Tat'yana Anatoliyevna</td>
<td>candidate of technical sciences</td>
<td>Khmelnitsky National University</td>
</tr>
<tr>
<td>Kapitanov Vasily Pavlovich</td>
<td>doctor of technical sciences professor</td>
<td>Odessa National Maritime University</td>
</tr>
<tr>
<td>Mel'nikov Aleksandr Yur'yevich</td>
<td>candidate of technical sciences assistant professor</td>
<td>Donbass State Machine-Building Academy</td>
</tr>
<tr>
<td>Tolbatov Andrey Vladimirovich</td>
<td>candidate of technical sciences assistant professor</td>
<td>Sumy National Agrarian University</td>
</tr>
</tbody>
</table>
CONTENTS / СОДЕРЖАНИЕ

Industrial engineering. Management engineering
Информатика, вычислительная техника и управление

- THE MODEL OF SUSTAINABLE TERRITORIAL DEVELOPMENT BASED ON INNOVATION
 МОДЕЛЬ СТАЛОГО РОЗВИТКУ ТЕРИТОРІЙ НА ОСНОВІ ІННОВАЦІЙ
 Rybak A.I. / Рибак А.І., Azarova I.B. / Азарова І.Б.
 4

- LOCATION CONTROL BY SPECIALIZED COMPUTER NETWORKS
 ВИЗНАЧЕННЯ МІСЦЕЗНАХОДЖЕННЯ ОБ’ЄКТІВ КОНТРОЛЮ ЗА ДОПОМОГОЮ СПЕЦІАЛІЗОВАННИХ КОМП’ЮТЕРНИХ МЕРЕЖ
 Babchuk S.M. / Бабчук С.М.
 11

- IDENTIFICATION OF THE INDICATORS OF THE HEALTH OF UKRAINE’S POPULATION ON THE BASIS OF MARKETING RESEARCHES (MODEL OF MENTALIZATION)
 ІДЕНТИФІКАЦІЯ ПОКАЗНИКІВ СТАНУ ЗДОРОВ’Я НАСЕЛЕННЯ УКРАЇНИ НА ОСНОВІ МАРКЕТИНГОВИХ ДОСЛІДЖЕНЬ (МОДЕЛЬ САМООЦІНКИ)
 Perevozova Iryna / Переверзова І.В., Hrechanyk Nataliia / Гречанюк Н.Ю., Pyuryk Markiyan / Пюрык М.В.
 16

Mechanical engineering and machinery
Машиностроение и машиноведение

- CALCULATION OF HEAT AND MASS-EXCHANGE PROCESSES IN ELECTRIC MACHINES
 РАСЧЕТ ТЕПЛОМАССООБМЕННЫХ ПРОЦЕССОВ В ЭЛЕКТРИЧЕСКИХ МАШИНАХ
 Koren E.V. / Корень Е.В.
 34

Engineering instruments, meters, etc. Industrial instrumentation
Приборостроение, метрология и информационно-измерительные приборы и системы

- PRINCIPLES OF ARCHITECTURE DEVELOPMENT OF A UNIVERSAL DEVICE FOR BIOPOTENTIAL MEASUREMENT
 ПРИНЦИПЫ ПОСТРОЕНИЯ АРХИТЕКТУРЫ УНИВЕРСАЛЬНОГО УСТРОЙСТВА РЕГИСТРАЦИИ БИОПОТЕНЦИАЛОВ ОРГАНИЗМА
 Kozhevnikov A.V. / Кожевников А.В.
 44

- DEVICE FOR THE ELECTROCHEMICAL ACTIVATION OF WATER
 УСТРОЙСТВО ДЛЯ ЭЛЕКТРОХИМИЧЕСКОЙ АКТИВАЦИИ ВОДЫ
 Kyianovskyi A.M. / Кияновский А.М.
 52
PORTABLE BLOOD PRESSURE MANOMETER
ПОРТАТИВНИЙ МАНОМЕТР АРТЕРИАЛЬНОГО ТИСКУ
Kashuba D.A. / Кашуба Д.А.

QUALITY OF CHILDREN'S LIGHTS
ЯКІСТЬ ДИТЯЧИХ КОЛГОТОК
Domanova O. V. / Domanova O. V., Butts M. S. / Butts M. S.

TECHNOLOGICAL FEATURES OF TRANSPORTATION OF CARGO
OILFIELD SERVICES COMPANY
ТЕХНОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ТРАНСПОРТИРОВКИ ГРУЗОВ
НЕФТЕСЕРВИСНОЙ КОМПАНИИ
Sergaliev I.I. / Сергалиев И.И., Guyvik-Klyonova K. A. / Гуйвик-Клёнова К.А.

TRANSPORTATION AND LOGISTICS FOR FOREST PROJECTS USING SIMULATION METHOD
ТРАНСПОРТНО-ЛОГИСТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ЛЕСНЫХ ПРОЕКТОВ С ПРИМЕНЕНИЕМ МЕТОДА МОДЕЛИРОВАНИЯ
Chertin A.N. / Чертин А.Н., Guyvik-Klyonova K. A. / Гуйвик-Клёнова К.А.

ANALYSIS OF THE PROMOTION OF EXTERNAL RAILCAR TRAFFIC IN THE TRANSPORT LOGISTICS OF A METALLURGICAL ENTERPRISE
АНАЛИЗ ПРОДВИЖЕНИЯ ВНЕШНЕГО ВАГОНОПОТОКА В ТРАНСПОРТНОЙ ЛОГИСТИКЕ МЕТАЛЛУРГИЧЕСКОГО ПРЕДПРИЯТИЯ
Kiritsheva E.V. / E. Kiritseva, Gusev Yu.V. / Y. Gusev

ANALYSIS OF THE MARKET OF TRANSPORTATION OF PROJECT CARGO.
АНАЛИЗ РЫНКА ПЕРЕВОЗОК ПРОЕКТНЫХ ГРУЗОВ.
Melnyk O.M. / Мельник О.М.
Scientific achievements of the authors were also presented at the International Conference "Scientific and technological revolution of the XXI century" (June 6-7, 2019)
The decision of the international scientific conference: works, that received positive feedback, have been recommended for publication in the journal «Modern engineering and innovative technologies»

Development of the original layout - Sergeieva&Co

Signed: 29.06.2019

Sergeieva&Co
Lußstr. 13
76227 Karlsruhe

e-mail: editor@moderntechno.de
site: www.moderntechno.de

The publisher is not responsible for the reliability of the information and scientific results presented in the articles

With the support of International research project SWorld
www.sworld.education